
Comp 163: Computational Geometry Professor Diane Souvaine
Tufts University, Spring 2005 Scribe: Heather Wong

Topological Sweep

1 Topological sweep

Let H be a set of n lines in the plane. Assume that no three lines intersect at
a point and that none of the lines is vertical. Each line intersects n−1 other
lines and thus is divided into n edges. The regions, edges and vertices parti-
tion the plane into a subdivision known as arrangement. If we use a vertical
sweep line, we need to sort n2 intersection points. Whether it is possible to
sort the n2 intersection points determined by n lines in o(n2 log n) is still an
open problem. In topological sweep we compromise the straightness of the
sweepline to acheive better time and space complexities than vertical line
sweep. The idea of topological sweep is to use a curved line (topological line)
with some special properties to simulate a vertical line. Using a topological
line to sweep the arrangement, we need only O(n2) time and O(n) space.

A topological line (cut) is a monotonic line in y-direction which inter-
sects every other line exactly once. It is specified by a sequence of edges
(c1, c2, , , , , cn), each contains an intersection point of the cut with a different
line in the arrangement. Notice that a vertical sweep line runs from −∞
to ∞ in the y-direction and intersects each line in the arrangement exactly
once. A cut has the same properties by definition.

The sweep will be implemented by starting with leftmost cut which in-
cludes all semi-infinite edges and pushing it to the right till it becomes the
rightmost cut, in a series of elementary steps.

An elementary step is performed when the topological line sweeps past a
vertex of the arrangement. To keep the sweep line a topological line, we can
only past a vertex which is the intersection point of 2 consecutive edges in
the current cut. (Otherwise, it will intersect some line more than once.) Do
we always have such a vertex during the process of sweeping? That is, will
the topological sweep get stuck?

Lemma 1.1 There always exist two consecutive edges of the cut with a com-
mon right endpoint, unless we are considering the rightmost cut.

1

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

��
��
��
��

��
��
��
��

l

v[i]

v[j]
c[j]

c[i]

or

i > j

c[i]

c[j]

v[i]

v[j]

l

Figure 1: The right endpoint of an edge of the cut.

Proof 1.2 Assume that there are vertices still unprocessed but there is no
pair of cut edges ck, ck+1 which share a common right endpoint. Let ci be the
cut edge with the leftmost right endpoint. Let cj be the edge of the cut on l
which cuts ci at its right endpoint vi. cjs right endpoint (vj) is either to the
right or to the left of cis right endpoint (vi). See figure 1.

If vj is to the right of vi, then the topological line cuts l more than once.
So, this can not be the case.

If vj is to the left of vi, then vj is the leftmost right endpoint. Contradic-
tion.

Therefore vi = vj. And the leftmost right endpoint is always an elemen-
tary step.

2 Data Structure

E[1:n] is the array of line equations:
E[i] = (ai, bi) if the ith line li of arrangement H is y = aix + bi.

HTU[1:n] is an array representing the upper horizon tree.
HTU[i] is a pair (λi, ϕi) of indices indicating the lines that
delimit the segment of li in upper horizon tree to the left
and to the right respectively.

HTL[1:n] represents the lower horizon tree and is defined similarly.
I is a set of integers, represented as a stack. If i is in I, then ci and

ci+1 share a common right endpoint.
M[1:n] is an array holding the current sequence of indices that from

the lines m1, m2, , , , , mn of the cut.
N[1:n] is a list of pairs of indices indicating the lines delimiting each

edge of the cut.

The upper horizon tree of a cut is constructed by starting with the cut-

2

l1

l2

l3

l4

l5

l6

l1

l2

l3

l4

l5

l6

Figure 2: Upper and Lower Horizon Trees

edges and extending them to the right. When two edges come together at an
intersection point, only the one of higher slope continues to the right. If the
segment of li in HTU is the leftmost on li, then λi = −1, if it is the rightmost
then ρi = 0. See figure 2.

The Lower horizon tree is constructed similarly. The difference is that
when two edges intersect, only the one of lower slope continues to the right.

Given HTU and HTL, the right endpoint of the edge on li is identified by
the closer of HTU[i] and HTL[i].

3 The algorithm

Initialization:

1. Sort the lines of the arrangement by slope.

2. Find the leftmost and the rightmost intersection point of the lines. Let
the two points be (xl, yl) and (xr, yr).

3. Create vertical lines x = xl − 1, x = xr + 1 as left boundary and right
boundary. Determine the intersection points of lines l1, , , ln with the
boundaries.

4. Create upper horizon tree:
Insert l1, , , ln in order to make a “hammock”:
Assume l1, , , lk have been inserted. These lines form an upper bay as
shown in figure 3. To insert lk+1, begin at its endpoint on the left
boundary. Walk in counter clockwise order around the bay till we find
the intersection point of lk+1 with an edge.

5. Create lower horizon tree similarly by starting the travers at endpoints
on the right boundary.

3

l (k+1)

l (k)

l (2)

l (1)
= new edge

 in upper H.T.

Figure 3: Creating a hammock.

6. Initialize N: Let HTU[i] = (-1, r) and HTL[i] = (-1, s). If lr intersects
li to the left of the intersection point of ls and li then the right delimiting
line of ei is r. Otherwise, the right delimiting line of ei is s.

7. Initialize I by scanning N.

Step 1 takes O(n log n) time. Step 2 could be done in linear time since the
leftmost and rightmost intersection points must be the intersection points of
two consective lines in the sorted order. Step 3,6,7 take linear time.

Now lets look at step 4. When inserting line li, each edge on the bay will
be traversed once. There are O(n) edges on the bay and there are n lines to
be inserted. So we have O(n2). Could we find a tighter bound? Notice that
our lines are inserted in decreasing order of slopes. Edges on the bay that
fail to intersect with line li will not appear on the new bay formed after we
insert line li. Each line can only fail once, and therefore be traversed once.
So, HTU can be created in O(n) time.

By similar argument, step 5 also takes O(n). Hence, the initialization can
be done in O(n) after sorting of lines.

Elementary Step

After initialization, a series of elementary steps has to be executed. Notice
that when passing a valid vertex (stored in I), only the two cut edges involved
get changes, all other edges remain the same.

While I�= Λ

1. Pop i from I

2. Swap M[i], M[i + 1] /*lines are going to cross, after the elementary
step*/

3. N[i].λ ← N[i + 1].ρ
N[i + 1].λ ← N[i].ρ /*the point of elementary step becomes the left
endpoint of the two new cut edges */

4

��
��
��
��

�
�
�
�

����

������
Bay

P

Q

E
l (M(i))

l (M(i+1))

c’(i)

c’(i+1)c(i+1)

c(i)s (i)

s (i+1)

Figure 4: Updating the Horizon Tree

4. Update HTU, HTL.

5. N[i].ρ ← closer HTU[M(i)].ρ,HTL[M(i)].ρ
N[i + 1].ρ ← closer HTU[M(i + 1)].ρ,HTL[M(i + 1)].ρ
/* find the new right endpoints */

6. If N[i + 1].ρ = M[i + 2] then push i + 1 into I.
If N[i].ρ = M[i − 1] then push i − 1 into I.
/* push valid vertices formed after sweeping into I if there is any */

The steps 1,2,3,5,6 require just O(1) time. Lets take a look at step 5.

Update HTU

Assume that an elementary step is done after passing point E, which
is the common right endpoint of edge ci and ci+1. Let si and si+1 be the
left endpoints of ci and ci+1 respectively. At first, HTU[M[i]] contains the
segment siE and HTU[M[i+1]] conatins the segment si+1P . After sweeping
over E, HTU[M[i]] should contain EP and HTU[M[i+1]] should contain EQ.
All other entries of HTU remain the same. Updating HTU[M[i]] takes only
constant time since we already have E and P . To update HTU[M[i + 1]], we
need to traverse the bay till line lM [i] hits the bay. See figure 4.

To see the time complexity, consider the following charging system: For
each edge traversed, we charge a unit cost to the node x corresponding to the
elementary step. If some where later, an elementary step at node z makes the
edge that charges x invisible from x, then we’ll transfer the one unit charge
to node z.

5

��
��
��
��

������
�
�
�
� ��

��
��
��

����

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
����������

�����
�����
�����
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

���
���
���

���
���
�����
��
��
��

a

b c d

e

q

p
r

v

u
z

y

x

t

Figure 5: The elementary step at z creates edge zv, making x invisible from
d.

For example, consider the arrangement in figure 5. First there is an
elementary step at x, which modified the corresponding HTU entries from qt
and px to xt and xu respectively. So, each of edge a, b, c and d charge one unit
to x. Next elementary step occurs at point y, which changes the involving
HTU entries from xt and ry to yt and yz. Finally, the elementary step at
point z changes HTU entries from xu, yz to zu and zv. The newly created
edge zv makes edge d invisible from node x, the charge due to traversing d
is transferred from node x to node z.

Lemma 3.1 At the end of the algorithm each vertex is charged at most once
for every edge on an incident region for the HTU (HTL) computation.

Proof 3.2 A vertex v is charged only during the excecution of the elemen-
tary step at v. It gets one charge for every edge traversed, each of which is
currently visible from it. It also gets one charge for each edge of the same
region that is seperated by the current edge from its old vertex. If sometime
later, an elementary step makes the edge invisible from v, then this edge will
not be in the same region with v and the charge of the edge will be transferred
to some other vertex. So, at the end of the algorithm, only the edges that is
in the incident region of v will charge v and each of them can charge v at
most once.

Lemma 3.3
∑

R∈l | R |= O(n).

6

�
�
�
�

��
��
��
�� �

�
�
� ��

��
��
��

��������
a

b

c

d
e

f

g
h

ls

r

t

P1 P2 P3 P4 P5 P6

Figure 6: Edge Charges

Proof 3.4 The idea of this proof is to charge each edge of the faces that touch
l to vertices on l and bound the number of charges of each vertex. Since the
number of vertices on l is O(n), we have

∑
R∈l | R |= O(c ∗ n) = O(n).

Let l(ei) denotes the line that contains edge ei. Consider the following
charging system:

For each face F adjacent to line l and above l
For each edge ei arranged in counter clockwise order except the ones

touching l
If l(ei) intersects l to the left of F
then charge one cost to the intersection point of l(ei−1) with l
else charge one cost to the intersection point of l(ei+1) with l

For example, in figure 6, P1 gets 2 charges, one from edge d, one from
edge r. P2 gets 2 charges from c and s. P3 gets one charge from b, etc.

Similarly, for each face below l, we charge the vertices on l in the similar
way. For each vertex of l, the number of charges it gets is less than or equal
to 4 - 2 from edges of the face above l, and 2 from those below l. Therefore,
there are O(n) edges that get charges.

Now, let’s see the edges that don’t get any charge: For each vertex v on
l, there are two edges that have v as its right or left endpoint and don’t get
any charge (for example, edges a and g in the figure). Also, the edges that lie
on l do not get any charge either. There are O(2n + n) = O(n) such edges

7

altogether.
So,

∑
R∈l | R |= O(4n + 2n + n) = O(n).

Lemma 3.5
∑

R∈H | R |2= O(n2).

Proof 3.6
∑

l∈H

∑
R∈l | R |= O(n2) and

O(n2) =
∑

R∈H | R |2 from 3.3.

Theorem 3.7 The total cost of updating HTU (or HTL) through all the
elementary steps is O(n2).

Proof 3.8 From lemma 3.1 we know that an edge e charges a vertex only if
they are in the same region and may do so only once. Consider region R in
the arrangement. Each of its vertices can get at most | R | charges, and there
are | R | vertices in R. So, there are at most | R |2 charges associate with R.
Summing this over all regions we get

∑
R∈H | R |2= O(n2) by lemma 3.5.

Hence all the topological sweep can be carried out in O(n2) time. As for
the space requirement, all the data structures maintained (6 arrays) are of
linear size. So, space requirement is O(n).

Reference

1. H. Edelsbrunner and L.J. Guibas, Topologically Sweeping an Arrange-
ment. J. of Computer and System Sciences, 38:165-194, 1989

2. D. Dobkin and D. L. Souvaine, ”Computational Geometry - A User’s
Guide”, Chapter 2 of Algorithmic and Geometric Aspects of Robotics,
J.T.Schwartz and C.K.Yap.

3. Class Notes of Computational Geometry, Spring 1990.

8

