-

Lechure Notes- _by

Dilane Souva.ne,

TRIANGULATION ALGCRITHM

Suppose we have a finite planar subdivision S on n vertices which consists of a large triangle
@ and N polygons interior to ¢. All of the finite reqions may be triangulated in O(n log n) time.
At first, they may have little uniformity. The polygons themselves may have any number of
reflex angles (angles whose measures exceed 180 °). In addition, one region consists of a triangle
with N polygonal holes. By adding edges, however, we can break up as many of the N + 1 regions
as necessary and creale a subdivision §' whose faces are all polygons monotone with respect to
the z-axis. First, we describe a technique for triangulating monotone polygons. Secondly, we will
discuss a method for decomposing the faces of a planar subdivision into polygons monotone with

respect to the x-axis.

A polygon P with consecutive vertices v,v,,...,v,, leftmost vertex v, and rightmost vertex v
is monotone with respect to the z-axis ifl both vy, v,,...,v,4,v; and U1, ¥my--, Uip1, ¥ @T€ in increasing
order of x-coordinate. We can merge these two sequences in time O(m) to form a sequence
1,92, - - - ,4n containing all vertices of P in increasing order of x-coordinate. To triangulate P,
we‘will move through these vertices in order, adding edges where possible and retaining on a
stack those vertices already considered but which still lie on the boundary of a polygon yet to be

triangulated.

1

Before describing the algorithm in general, let us consider the example in Figure 27. We
begin by pushing ¢;,¢; on the stack. Next, we consider g;. It is already adjacent to ¢, so an edge
from g3 to ¢ would be redundant. As the interior angle at ¢, exceeds 180 °, an edge from g5 to ¢
could not lie inside the polygon. Push g3 on the stack. The next vertex, g,, presents the same
problems, so it too is pushed onto the stack. Vertex gg, however, is adjacent to g, and the interior
angle at g, measures less than 180 °. We pop ¢4, add edge e, and then consider the angle / g;¢s¢».
As it also measures less than 180 °, we pop ¢3, add edge ¢, and then consider angle / g5¢.4,. As it
is not smaller than a straight angle, an edge from g; to g; would not lie in the interior of P, so we
push g5 and move to ge. It is adjacent to ¢, the first vertex on the stack. We add the edges e,
and ¢4, empty the stack, and then push ¢5;¢s. ¢7 and ¢z are adjacent and the current interior
angle at gg measures less than 180 ° so we can pop g5 add e;, and then push ¢;. As the angle at
g7 exceeds 180 °, no edge can be added at ¢, so we push that vertex on the stack. The last ver-
tex, gg must be adjacent to both the bottom and top elements on the stack, g5 and ¢z. We add eq,
the edge from gg to the only middle element of the stack. Then we empty the stack, and stop.

The general algorithm proceeds as follows:

Begin
1 S|t~ &
2) 512 + ¢
3) top «+ 2
4) For i = 3 to m begin
5) If ¢, is adjacent to S[top], but not to S{1], begin
6) While top > 1 and Lg,S|top]$[top-1] < 180 ° begin
7) add an edge from g; to S{top)
8) top « top -1
end
9) top «— top + 1
10) Sftop] + ¢
end
11) If g; is adjacent to S{1], but not to S|top], begin
12) For j = 2 to top, add an edge from g; to S{y]
13) 511} = Stor]
14) 5[2] «~ g
15) top + 2
end
16) If g is adjacent to both $[1] and S[top], begin
17) For j = 2 to top — 1 add an edge from g, to 5{j]
18) top « O
end

end

End

Only wher i= m and we are processing the last vertex is the condition of step 13 satisfied.
Thus, only after processing the last vertex is the stack emptied (step 15). Each vertex is pro-
cessed once prior to putting it on the stack. At most one edge is added as each vertex is popped

from the stack. Thus the entire algorithm runs in linear time.

Now we wish to add edges between existing vertices in the planar subdivision S to achieve a
planar subdivision §/ whose faces are all polygons monotone with respect to the z-axis. First we
must identify those vertices which violate the condition of monotonicity. Consider the example of
Figure % First we sort the vertices relative to their x-coordinate and label them vy, . . . ,y5. At
each vertex, v, we add two temporary vertical edges: one extends from v; to the edge above,

forming a temporary vertex there; the other extends from v, to the edge below, also forming a

-3-

temporary vertex. When this process is complete, the faces of S! are all trapezoids whose bases
are parallel to the y-axis (some are degenerate and form triangles with a single side parallel to the
y-axis). [See F igure,%]. We focus on the 5 trapezoids which each contain a permanenent vertex in
the interior of a side. In each case, we add an edge from that vertex to another permanent vertex

lying on the same trapezoid.

TRAPEZOID EDGE

T (vsv1)
T, (v5vs)
Ty (vr,v8)
T, (vo,v10)
T (v2,v13)

Following this procedure, delete all temporary edges. Six polygons monotonic in z result. [See
Figure ,6']

To add the temporary edges, we will sweep a vertical line across §' keeping an accurate
list of active edges and their relationship to each other. Each edge will have a field which points
to the edge above and a field which points to the edge below. The sweep line begins at v; and v,,
the leftmost vertices. The edge e, enters and leaves the data structure almost at the same
instant. As the vertical line moves toward v, the data structure contains two edges. At v, two

more edges are inserted into the data structure and the pointers are updated:

EDGE ABOVE BELOW

2 €4 ¢
€g ¢ €5
€4 €s €2
s €3 €4

Since v3 joins e, and €5 we extend a vertical edge, ¢;, from vy to e3 and a second edge, £, from v,
to e;. At v,, eg replaces g4 in the data base and vertical edges are added from v, to ¢; and e,. At

v;, two new edges are inserted, and at vy another exchanges takes place. At v, two edges are
deleted.

H we keep all of these edges in the leaves of a balanced tree and if each interior node con-
tains the value of the uppermost edge of its subtree, then the processing time at each vertex is
only O(log n) where n is the number of vertices. Consequently, all of the temporary edges may be

added to S! in time O(n log n). As S' is a planar graph, it contains fewer that 2n trapezoids.

-4-

We can consider each one and add any necessary permanent edges in time O(n). Thus the overall

time of this algorithm is O(n log n).

BIBLIOGRAPHIC NOTES

The algorithm for triangulating monotone polygons is due to Garey, Johnson, Preparata and
Tarjan [GJPT78]. The method of decomposition of a the faces of a planar subdivision into mono-

tone polygons is derived from the work of Chazelle and Incerpi [Ch84b] and [CI83].

FleuReE 1.

TRANGULA ION OF & MONCTONE PoLYGoN

\
£

Lt e
gt g e I
[A

