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Supplemental lecture:

Computing Voronoi diagrams
using point-to-plane transforms

We present an algorithm which produces the Voronoi diagram of a set S
of n distinct points in R? by computing the upper envelope of a corresponding
set H of planes in R3.

1 Preliminaries

Given a set S = {p1, p2, ..., pn} Of distinct points in R?, the Voronoi cell V (p;)
of a point p; € S is

Vip:) ={q € R*|d(pi,q) < dlpj,q) Vj#i, 1<j<n},
where d(p, q) denotes the Euclidean distance between points p and ¢ in R?.

The Voronoi diagram V(S) of S is the family of subsets of R? consisting
of all Voronoi cells {V (p;) | p; € S} and their intersections.

A set H of n planes defines a subdivision of R? into connected chunks of
dimension 0 (points), 1 (lines), 2 (planes), or 3 (3D objects). This subdivision
comprises the arrangement of H, analogous to an arrangement of lines in R2,
as previously studied in another topic.

Assumption:

Any point in any plane H; € H, 1 < i < n, can be written as (z,y, fy(z,v)),
where fy is some linear function from R? — R.

All this means is that we're disallowing vertical planes, i.e., planes parallel
to the z-axis.



A point p = (pg,py,p.) € R® is above plane H; if and only if p, >
fH,(pz,y); below is defined analogously.

The upper envelope of the arrangement of H is then defined to be

{all points p = (ps, py, p-) € R? | p is above or in all planes H; € H}.

2 Example: R - R?> - R

Consider first a set P = {py, ..., p,} of points in R:

The Voronoi diagram of P is just the set of closed (or half-closed) intervals
whose endpoints are midway between all adjacent pairs of points in P:

e

A parabola in R? is the set of all points in the plane which are equidis-
tant from some given point and some given line. The given point is known
as the focus of the parabola, and the given line is its directriz. This no-
tion of "equidistant” is the key correspondence here between parabolas (and
paraboloid structures in higher dimensions) and Voronoi diagrams.



Now consider our set P of points in R to be points {p; = (p;,0)} along
the x-axis in R?. Consider the points {(p;,p?)} on the parabola y = z* in
R2:

P

Because y = 2% is concave upward, there is a unique line tangent to y = 2>

at each of these points:

Z

Notice that the upper envelope of the arrangement of these lines in R?



approximates the parabola y = 2, which we hinted earlier was a structure
containing an important quality of equidistance.

Final observation: the intersection points of the line segments on the
upper envelope, when projected onto the z-axis (i.e., down one dimension
back into R) land on the Voronoi boundaries of our original set P:

This is exactly analogous to what’s done in the next section, when instead
of moving data R — R? — R, we move information R? — R? — R2.

3 Computation: R?> — R? — R?

Input: A set S of n points {pi, ..., p,} in R?.
Output: The Voronoi diagram V' (S) of S.

Theorem: This computation can be done in time proportional to that of
computing the upper envelope of n planes {Hy, ..., H,} (equivalently, the
intersection of n half-spaces) in R3.



Proof:
Define a map v : R? — R? where ¥(z,y) = (x,y, (% + y?)).

(This maps points in R? to their projections, in the positive z-direction,
onto the paraboloid z = 22 + y?, whose base is at the origin, and which is
directly analogous in this context to the parabola y = 2? from the example
section.)

Also as in the example section, because z = 2% 4 y? is concave upwards,
there’s a unique plane tangent to it at any given point. So we now associate,
for each point p; € S, a unique plane h; in R?® tangent to z = 2% + y? at
¥ (p;). This set of planes completely encodes the relative distances of points
q € R? to points in S.

Lemma:

Let ¢ € R? and let h;(q) be the projection in the
positive z-direction of ¢ onto the plane h;. Then

d(pi, CI)2 = 1(q) — hi(q).

Proof: Left to reader (easy computation, just using definitions).

The crucial point here is that the further ¢ is from p; in R2, the further ¢’s
projection onto z = x? + y? is from the associated tangent plane h;.



Now we compute V(S) as follows. Let ¢ € R? be in the interior of V (p;),
the Voronoi cell of p;. By our lemma, this is equivalent to h; being the first
plane one encounters, moving downwards from (q) (the projection of ¢ onto
z = 2?4+ y*). But then V(S) is exactly the projection onto R? of the upper
envelope of H = {h; | p; € S}. O

4 Note

Since the computation of the upper envelope of n planes (or the intersection
of n half-spaces) was covered in detail in a previous lecture, we refer you to
the scribe notes for that lecture, the User’s Guide, and the text for details of
implementation and analysis.
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