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Supplemental lecture:

Computing Voronoi diagrams
using point-to-plane transforms

We present an algorithm which produces the Voronoi diagram of a set S
of n distinct points in R

2 by computing the upper envelope of a corresponding
set H of planes in R

3.

1 Preliminaries

Given a set S = {p1, p2, ..., pn} of distinct points in R
2, the Voronoi cell V (pi)

of a point pi ∈ S is

V (pi) := {q ∈ R
2 | d(pi, q) ≤ d(pj , q) ∀j �= i, 1 ≤ j ≤ n},

where d(p, q) denotes the Euclidean distance between points p and q in R
2.

The Voronoi diagram V (S) of S is the family of subsets of R
2 consisting

of all Voronoi cells {V (pi) | pi ∈ S} and their intersections.

A set H of n planes defines a subdivision of R
3 into connected chunks of

dimension 0 (points), 1 (lines), 2 (planes), or 3 (3D objects). This subdivision
comprises the arrangement of H , analogous to an arrangement of lines in R

2,
as previously studied in another topic.

Assumption:

Any point in any plane Hi ∈ H , 1 ≤ i ≤ n, can be written as (x, y, fH(x, y)),
where fH is some linear function from R

2 → R.

All this means is that we’re disallowing vertical planes, i.e., planes parallel
to the z-axis.
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A point p = (px, py, pz) ∈ R
3 is above plane Hi if and only if pz >

fHi
(px, py); below is defined analogously.

The upper envelope of the arrangement of H is then defined to be

{all points p = (px, py, pz) ∈ R
3 | p is above or in all planes Hi ∈ H}.

2 Example: R → R
2 → R

Consider first a set P = {p1, ..., pn} of points in R:

The Voronoi diagram of P is just the set of closed (or half-closed) intervals
whose endpoints are midway between all adjacent pairs of points in P :

A parabola in R
2 is the set of all points in the plane which are equidis-

tant from some given point and some given line. The given point is known
as the focus of the parabola, and the given line is its directrix. This no-
tion of ”equidistant” is the key correspondence here between parabolas (and
paraboloid structures in higher dimensions) and Voronoi diagrams.
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Now consider our set P of points in R to be points {pi = (pi, 0)} along
the x-axis in R

2. Consider the points {(pi, p
2
i )} on the parabola y = x2 in

R
2:

Because y = x2 is concave upward, there is a unique line tangent to y = x2

at each of these points:

Notice that the upper envelope of the arrangement of these lines in R
2
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approximates the parabola y = x2, which we hinted earlier was a structure
containing an important quality of equidistance.

Final observation: the intersection points of the line segments on the
upper envelope, when projected onto the x-axis (i.e., down one dimension
back into R) land on the Voronoi boundaries of our original set P :

This is exactly analogous to what’s done in the next section, when instead
of moving data R → R

2 → R, we move information R
2 → R

3 → R
2.

3 Computation: R
2 → R

3 → R
2

Input: A set S of n points {p1, ..., pn} in R
2.

Output: The Voronoi diagram V (S) of S.

Theorem: This computation can be done in time proportional to that of
computing the upper envelope of n planes {H1, ..., Hn} (equivalently, the
intersection of n half-spaces) in R

3.
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Proof:

Define a map ψ : R
2 → R

3 where ψ(x, y) = (x, y, (x2 + y2)).

(This maps points in R
2 to their projections, in the positive z-direction,

onto the paraboloid z = x2 + y2, whose base is at the origin, and which is
directly analogous in this context to the parabola y = x2 from the example
section.)

Also as in the example section, because z = x2 + y2 is concave upwards,
there’s a unique plane tangent to it at any given point. So we now associate,
for each point pi ∈ S, a unique plane hi in R

3 tangent to z = x2 + y2 at
ψ(pi). This set of planes completely encodes the relative distances of points
q ∈ R

2 to points in S.

Lemma:

Let q ∈ R
2 and let hi(q) be the projection in the

positive z-direction of q onto the plane hi. Then

d(pi, q)
2 = ψ(q) − hi(q).

Proof: Left to reader (easy computation, just using definitions).

The crucial point here is that the further q is from pi in R
2, the further q’s

projection onto z = x2 + y2 is from the associated tangent plane hi.
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Now we compute V (S) as follows. Let q ∈ R
2 be in the interior of V (pi),

the Voronoi cell of pi. By our lemma, this is equivalent to hi being the first
plane one encounters, moving downwards from ψ(q) (the projection of q onto
z = x2 + y2). But then V (S) is exactly the projection onto R

2 of the upper
envelope of H = {hi | pi ∈ S}. �

4 Note

Since the computation of the upper envelope of n planes (or the intersection
of n half-spaces) was covered in detail in a previous lecture, we refer you to
the scribe notes for that lecture, the User’s Guide, and the text for details of
implementation and analysis.
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