Supplemental lecture: Computing Voronoi diagrams using point-to-plane transforms

We present an algorithm which produces the Voronoi diagram of a set S of n distinct points in \mathbb{R}^2 by computing the upper envelope of a corresponding set H of planes in \mathbb{R}^3 .

1 Preliminaries

Given a set $S = \{p_1, p_2, ..., p_n\}$ of distinct points in \mathbb{R}^2 , the Voronoi cell $V(p_i)$ of a point $p_i \in S$ is

 $V(p_i) := \{ q \in \mathbb{R}^2 \mid d(p_i, q) \leq d(p_j, q) \quad \forall j \neq i, \ 1 \leq j \leq n \},$

where d(p,q) denotes the Euclidean distance between points p and q in \mathbb{R}^2 .

The Voronoi diagram V(S) of S is the family of subsets of \mathbb{R}^2 consisting of all Voronoi cells $\{V(p_i) \mid p_i \in S\}$ and their intersections.

A set H of n planes defines a subdivision of \mathbb{R}^3 into connected chunks of dimension 0 (points), 1 (lines), 2 (planes), or 3 (3D objects). This subdivision comprises the *arrangement of* H, analogous to an arrangement of lines in \mathbb{R}^2 , as previously studied in another topic.

Assumption:

Any point in any plane $H_i \in H$, $1 \leq i \leq n$, can be written as $(x, y, f_H(x, y))$, where f_H is some linear function from $\mathbb{R}^2 \to \mathbb{R}$.

All this means is that we're disallowing vertical planes, i.e., planes parallel to the z-axis.

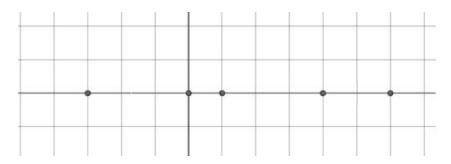
A point $p = (p_x, p_y, p_z) \in \mathbb{R}^3$ is above plane H_i if and only if $p_z > f_{H_i}(p_x, p_y)$; below is defined analogously.

The upper envelope of the arrangement of H is then defined to be

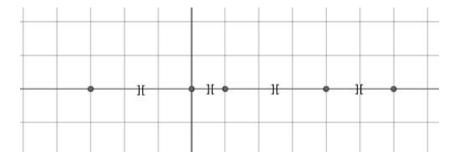
{all points $p = (p_x, p_y, p_z) \in \mathbb{R}^3 \mid p$ is above or in **all** planes $H_i \in H$ }.

2 Example: $\mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}$

Consider first a set $P = \{p_1, ..., p_n\}$ of points in \mathbb{R} :

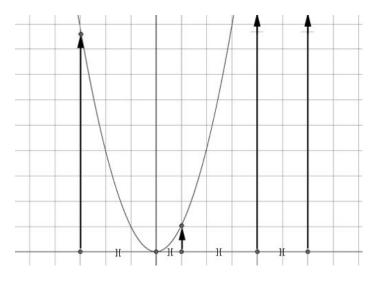


The Voronoi diagram of P is just the set of closed (or half-closed) intervals whose endpoints are midway between all adjacent pairs of points in P:

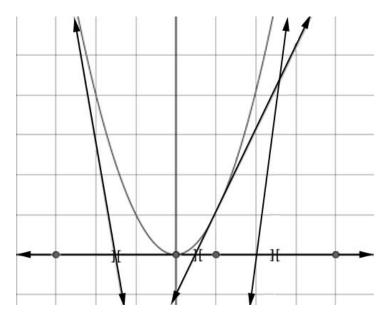


A parabola in \mathbb{R}^2 is the set of all points in the plane which are equidistant from some given point and some given line. The given point is known as the *focus* of the parabola, and the given line is its *directrix*. This notion of "equidistant" is the key correspondence here between parabolas (and paraboloid structures in higher dimensions) and Voronoi diagrams.

Now consider our set P of points in \mathbb{R} to be points $\{p_i = (p_i, 0)\}$ along the x-axis in \mathbb{R}^2 . Consider the points $\{(p_i, p_i^2)\}$ on the parabola $y = x^2$ in \mathbb{R}^2 :



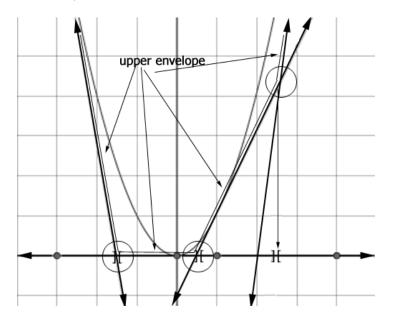
Because $y = x^2$ is concave upward, there is a unique line tangent to $y = x^2$ at each of these points:



Notice that the *upper envelope* of the arrangement of these lines in \mathbb{R}^2

approximates the parabola $y = x^2$, which we hinted earlier was a structure containing an important quality of *equidistance*.

Final observation: the *intersection points* of the line segments on the upper envelope, when projected onto the x-axis (i.e., down one dimension back into \mathbb{R}) land on the Voronoi boundaries of our original set P:



This is exactly analogous to what's done in the next section, when instead of moving data $\mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}$, we move information $\mathbb{R}^2 \to \mathbb{R}^3 \to \mathbb{R}^2$.

3 Computation: $\mathbb{R}^2 \to \mathbb{R}^3 \to \mathbb{R}^2$

Input: A set S of n points $\{p_1, ..., p_n\}$ in \mathbb{R}^2 .

Output: The Voronoi diagram V(S) of S.

Theorem: This computation can be done in time proportional to that of computing the upper envelope of n planes $\{H_1, ..., H_n\}$ (equivalently, the intersection of n half-spaces) in \mathbb{R}^3 .

Proof:

Define a map
$$\psi : \mathbb{R}^2 \to \mathbb{R}^3$$
 where $\psi(x, y) = (x, y, (x^2 + y^2)).$

(This maps points in \mathbb{R}^2 to their projections, in the positive z-direction, onto the paraboloid $z = x^2 + y^2$, whose base is at the origin, and which is directly analogous in this context to the parabola $y = x^2$ from the example section.)

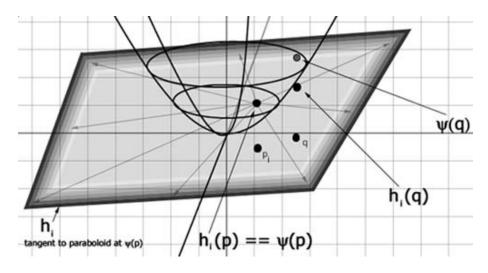
Also as in the example section, because $z = x^2 + y^2$ is concave upwards, there's a unique plane tangent to it at any given point. So we now associate, for each point $p_i \in S$, a unique plane h_i in \mathbb{R}^3 tangent to $z = x^2 + y^2$ at $\psi(p_i)$. This set of planes completely encodes the relative distances of points $q \in \mathbb{R}^2$ to points in S.

Lemma:

Let $q \in \mathbb{R}^2$ and let $h_i(q)$ be the projection in the positive z-direction of q onto the plane h_i . Then

$$d(p_i, q)^2 = \psi(q) - h_i(q)$$

Proof: Left to reader (easy computation, just using definitions).



The crucial point here is that the further q is from p_i in \mathbb{R}^2 , the further q's projection onto $z = x^2 + y^2$ is from the associated tangent plane h_i .

Now we compute V(S) as follows. Let $q \in \mathbb{R}^2$ be in the interior of $V(p_i)$, the Voronoi cell of p_i . By our lemma, this is equivalent to h_i being the first plane one encounters, moving downwards from $\psi(q)$ (the projection of q onto $z = x^2 + y^2$). But then V(S) is exactly the projection onto \mathbb{R}^2 of the upper envelope of $H = \{h_i \mid p_i \in S\}$. \Box

4 Note

Since the computation of the upper envelope of n planes (or the intersection of n half-spaces) was covered in detail in a previous lecture, we refer you to the scribe notes for that lecture, the User's Guide, and the text for details of implementation and analysis.

References

- [1] Roderik Cornelis Lindenbergh, *Limieten van Voronoi Diagrammen [Limits of Voronoi Diagrams]*, University of Utrecht, 1970.
- [2] [written handout distributed in class], September 1995.