Besides representing DFAs and NFAs using diagrams we can express them using their full definition. Similar to a Turing Machine, we can define the alphabet, Σ, the set of states, Q, and the set of transitions δ. For problems 1 and 3 you will be defining an NFA and DFA respectively. Please submit your answer to these questions as a plain text files instead of pdfs.

Your automata should be formatted first by specifying the alphabet with the label sigma: followed by a newline. Then on each line specify a symbol in the alphabet. After the last character in the alphabet you will specify the states. This is denoted Q: and followed by a newline. Then each state is specified in the automata, one state name per line. The start state should be named qstart.

After the last state, you will specify the transitions in the automata. This is denoted delta: and followed by a newline. Each line that follows is one transition specified as:

$\langle \text{statename}, \text{alphabetsymbol} \rangle \rightarrow \text{statename}$

Finally, the list of accepting states are given. This is denoted accept: and followed by a newline and one accepting state per line. Note: for the epsilon transition in an NFA, we will use eps, this is not a member of Σ. A possible transition could be something like $\langle q4, \text{eps} \rangle \rightarrow q5$. You can also add comments to your code by using a #

So for the above example, the solution is:

sigma:

0
1

#This is a comment

Q:

$q\text{start}$
$q2$
$q3$
$q4$
$q5$
$q6$
delta:
<qstart, 0> -> q2 # here is another comment, comments will help the grader
<qstart, 1> -> q6 # understand your code
<q2, 0> -> q3
<q2, 1> -> q4
<q3, 0> -> q3
<q3, 1> -> q3
<q4, 0> -> q5
<q4, 1> -> q3
<q5, 0> -> q3
<q5, 1> -> q4
<q6, 0> -> q6
<q6, 1> -> q6
accept:
q4
q5
Problem 1

Give a NFA (or DFA) in the format described above for the following regular expression:

\[(00|11)^*10(11|00)^*10(0|1)^*\]

We provide you with a DFA/NFA syntax checker. Any syntax issues with this part of the assignment will result in zero credit.

![DFA/NFA Diagram]

Solution:

\(\text{sigma: } \#\text{Input Alphabet}\)

\(0\)

\(1\)

\(Q: \#\text{States}\)

\(q_{\text{start}}\)

\(q_1\)

\(q_2\)

\(q_3\)

\(q_4\)

\(q_5\)

\(q_6\)

\(q_7\)

\(\text{delta: } \#\text{Transitions}\)

\(<q_{\text{start}}, 0> \rightarrow q_1\)

\(<q_{\text{start}}, 1> \rightarrow q_2\)

\(<q_1, 0> \rightarrow q_{\text{start}}\)

\(<q_1, 1> \rightarrow q_7\)

\(<q_2, 0> \rightarrow q_3\)

\(<q_2, 1> \rightarrow q_1\)

\(<q_3, 0> \rightarrow q_4\)

\(<q_3, 1> \rightarrow q_5\)

\(<q_4, 0> \rightarrow q_3\)

\(<q_4, 1> \rightarrow q_7\)

\(<q_5, 0> \rightarrow q_6\)
<q5, 1> -> q3
<q6, 0> -> q6
<q6, 1> -> q6
<q7, 0> -> q7
<q7, 1> -> q7
accept:
qu6
Problem 2

For every string \(w = w_1w_2 \ldots w_n \), the string written in reverse, denoted \(w^r \), is the string \(w_nw_{n-1} \ldots w_1 \). For any language (set) \(L \), let \(L^R = \{ w^r \mid w \in L \} \). Show that if \(L \) has a DFA then \(L^R \) has a DFA.

Solution: Suppose \(L \) is recognizable by a DFA \(D \). Construct a non-deterministic finite automata \(N \) via the following procedure:

- If \(q \) is a start state in \(D \), then \(q \) is an accepting state in \(N \)
- If \(\langle q_i, s \rangle \to q_j \) is a transition in \(D \), then \(\langle q_j, s \rangle \to q_i \) is a transition in \(N \)
- If \(q \) is an accepting state in \(D \), then \(q \) is a start state in \(N \)
 (i.e. there is an extra state \(q^* \) in \(N \) with epsilon transitions to all accepting states in \(D \), and \(q^* \) is the start of \(N \))
- \(N \) has no other transitions, states, start states, or accepting states

We now show that \(L(N) = L^R \) by proving that, for any \(w, w \in L^R \iff w \in L(N) \).

By construction:

\[w \in L^R \iff w^r \in L \]

\[\iff w^r \text{ is accepted by } D \]

\[\iff \text{there is some sequence of states } S = q_1, q_2, q_3, \ldots, q_k \text{ such that} \]

\[- q_1 \text{ is the start state of } D \]

\[- q_k \text{ is an accepting state of } D \]

\[- \text{for every adjacent pair } (q_i, q_j) \text{ in } S \text{ there is a transition } \langle q_i, w_i^r \rangle \to q_j \text{ in } D \]

\[\iff \text{there is some sequence of states } S' = q_k, q_{k-1}, q_{k-2}, \ldots, q_1 \text{ such that} \]

\[- q_k \text{ is a start state of } N \]

\[- q_1 \text{ is the accepting state of } N \]

\[- \text{for every adjacent pair } (q_i, q_j) \text{ in } S' \text{ there is a transition } \langle q_i, w_i \rangle \to q_j \text{ in } N \]

\[\iff w \text{ is accepted by } N \]

\[\iff w \in L(N) \]

Since every non-deterministic finite automata is equivalent to a deterministic one, there is some DFA that recognizes \(L^R \).
Problem 3

Prove that the given language, L, defined below, is regular by defining a DFA in the format described above.

Let \(\Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \)

When given a string \(w \in \Sigma^* \) consider the top row as a number written in binary and consider the bottom row a second number written in binary.

So for example the string \(w = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) represents the number 5 on top and 2 on the bottom.

\(L = \{ w \mid w \in \Sigma^* \text{ and the top binary number in } w \text{ is greater than the bottom number in } w \} \)

To represent the tile symbols from \(\Sigma \) in your text file, let \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \) be 00, \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \) be 01, \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) be 10, \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \) be 11.

We provide you with a DFA/NFA syntax checker. Any syntax issues with this part of the assignment will result in zero credit

![DFA Diagram]

Solution:

sigma: #Input Alphabet

00
01
10
11

Q: #States

qstart
q1
q2

delta: #Transitions

<qstart, 00> -> qstart
<qstart, 01> -> q2
<qstart, 10> -> q1
<qstart, 11> -> q1

11, 00

01

11, 10, 01, 00

2

11, 10, 01, 00

10

1

11, 10, 01, 00

start
<qstart, 11> → qstart
<q1, 00> → q1
<q1, 01> → q1
<q1, 10> → q1
<q1, 11> → q1
<q2, 00> → q2
<q2, 01> → q2
<q2, 10> → q2
<q2, 11> → q2
accept:
q1
Problem 4

For languages A and B let the *shuffle* of A and B be the language L,

$$L = \{ w \mid w = a_1b_1a_2b_2\ldots a_kb_k, \text{ where } a_1, a_2, \ldots, a_k \in A, \text{ and } b_1, b_2, \ldots, b_k \in B, \text{ and each } a_i, b_j \in \Sigma^* \}$$

Prove that if A and B are regular then L is regular.

Solution: Suppose A and B are regular. Then A and B can be represented as regular expressions R_A and R_B. We define $R_L = (R_AR_B)^*$ and show that $R_L = L$.

$$w \in L \iff w = a_1b_1a_2b_2\ldots a_kb_k, \text{ where } a_1, a_2, \ldots, a_k \in A \text{ and } b_1, b_2, \ldots, b_k \in B, \text{ for some } k$$

$$
\iff w = a_1b_1a_2b_2\ldots a_kb_k, \text{ where } a_1, a_2, \ldots, a_k \in R_A \text{ and } b_1, b_2, \ldots, b_k \in R_B
$$

$$
\iff w \in (R_AR_B)(R_AR_B)\ldots(R_AR_B)_k
$$

$$\iff w \in (R_AR_B)^*
$$

Since R_L is a regular expression, and $R_L = L$, L is regular.
Problem 4’

For languages A and B let the \textit{shuffle} of A and B be the language L',

$$L' = \{ w \mid w = a_1 b_1 a_2 b_2 \ldots a_k b_k, \text{ where } 'a_1 a_2 \ldots a_k' \in A, \text{ and } 'b_1 b_2 \ldots b_k' \in B \}$$

Prove that if A and B are regular then L' is regular.

Solution: We first use dfa’s for A and B to construct a dfa D_S to recognize the language

$$S_L = \{ w \mid w = (a_1, b_1)(a_2, b_2)\ldots (a_k, b_k) \text{ s.t. } 'a_1 a_2 \ldots a_k' \in A \text{ and } 'b_1 b_2 \ldots b_k' \in B \}$$

where (a_j, b_k) represents a single character in the alphabet. We then use D_S to construct an nfa N_L to recognize L'.

Suppose A and B are regular. Then there are dfa’s

$$D_A = (\Sigma_A, Q_A, q_0A, \delta_A, F_A) \quad \text{and} \quad D_B = (\Sigma_B, Q_B, q_0B, \delta_B, F_B)$$

which recognize A and B respectively. Define

$$D_S = (\Sigma_S, Q_S, q_0S, \delta_S, F_S) \quad \text{where}$$

$$\Sigma_S = \Sigma_A \times \Sigma_B$$

$$Q_S = Q_A \times Q_B$$

$$q_0S = (q_0A, q_0B)$$

$$F_S = F_A \times F_B \quad \text{and} \quad \delta_S \text{ is defined as follows:}$$

$$\langle (q_i, q_s), (j, t) \rangle \rightarrow (q_k, q_u) \in \delta_S \iff \langle q_i, j \rangle \rightarrow q_k \in \delta_A \text{ and } \langle q_s, t \rangle \rightarrow q_u \in \delta_B$$

So, by construction, for arbitrary k

$$w \in L' \iff w = a_1 b_1 a_2 b_2 \ldots a_k b_k \text{ where } 'a_1 a_2 \ldots a_k' \in A \text{ and } 'b_1 b_2 \ldots b_k' \in B$$

$$\iff w' \in S_L \text{ where } w' = (a_1, b_1)(a_2, b_2)\ldots (a_k, b_k)$$

$$\iff \text{ in both } D_A \text{ and } D_B, \text{ there are accepting sequences of states which consume } a \text{ and } b \text{ respectively}$$

$$\iff \text{ there is an accepting sequence of states in } D_S \text{ which consumes } w'$$

$$\iff w' \in L(D_S)$$

where this last step holds (in both directions) because a and b are required to be the same length, and because D_A and D_B are dfa’s, so their accepting sequences have to line up for any string in the language.

We now construct an nfa $N_L = (\Sigma_L, Q_L, q_0S, \delta_L, F_S)$ to recognize L'. $\Sigma_L = \Sigma_A \cup \Sigma_B$. Q_L is identical to Q_S, except that Q_L contains one additional state for each transition in δ_S. δ_L is defined as follows: for each transition in δ_S of the form

\[
\begin{array}{c}
1 \quad \text{ab} \quad 2
\end{array}
\]

there are transitions in δ_L of the form:

\[
\begin{array}{c}
1 \quad a \quad * \quad b \quad 2
\end{array}
\]
where (1) and (2) are any (possibly identical) states, and (\(\ast\)) is the new state for that particular \(\delta_S\) transition. There are no other transitions in \(\delta_L\).

By construction,

\[
\begin{align*}
w' & \in L(D_S) \iff w' = (a_1, b_1)(a_2, b_2)\ldots(a_k, b_k) \quad \text{and there is some accepting sequence of } D_S \text{ that consumes } w \\
& \iff \text{there is some accepting sequence of } N_L \text{ that consumes } w, \text{ where} \\
& w = a_1b_1a_2b_2\ldots a_kb_k \\
& \iff w \in L(N_L)
\end{align*}
\]

Since

\[
w \in L' \iff w' \in L(D_S) \iff w \in L(N_L)
\]

\(L'\) is recognized by an nfa. Therefore, \(L'\) is regular.
*Note that, in the following, we use \(a \circ b \) to denote concatenation. For example, if \(a = '000' \) and \(b = '11' \), then \(a \circ b = '0011' \).

Problem 5

Prove that for every \(k > 1 \), a language \(A_k \subseteq \{0, 1\}^* \) exists that can be recognized by a DFA with \(k \) states, but not by one with \((k - 1) \) states.

Solution: Let \(s^{(x)} \) represent a string of \(x \) ’s, or \(\underbrace{s \ldots s}_{x} \). Define \(A_k = \{0^{(k-1)}\} \). We construct a DFA with \(k \) states that recognizes \(A_k \), then show that no DFA with \(k - 1 \) states recognizes \(A_k \).

Let \(D_k \) be the following DFA:

```
1 ----> 0 ----> 2 ----> 0 ----> 3 ----> 0 ----> \ldots ----> 0 ----> k-1 ----> 0 ----> k
```

We can see that \(w \) is accepted by \(D_k \) iff \(w \) is a sequence of \(k - 1 \) ‘0’s iff \(w \in A_k \). Therefore, every \(A_k \) is recognizable by some DFA with \(k \) states.

We show by induction on \(k \) that \(A_k \) is recognized by no DFA with \(k - 1 \) states.

Base case: \(k = 2 \). \(A_2 = \{1\} \). So, a DFA that recognizes \(A_2 \) must accept the string ‘1’ and reject everything else. Let \(D \) be a DFA with 1 state \(q \). If \(q \) is an accept state, then \(D \) accepts on the empty string, and so does not recognize \(A_2 \). If \(q \) is a reject state, then \(D \) rejects on all strings, and so does not recognize \(A_2 \). Therefore, \(A_2 \) is recognized by no single state DFA.

Inductive step: suppose that, for some \(n \geq 2 \), \(A_n \) is recognized by no DFA with \(n - 1 \) states. Suppose, for the sake of contradiction, that \(A_{n+1} = \{0^{(n)}\} \) is recognized by some DFA \(D \) with \(n \) states. Then there is some accepting sequence of states \(S = q_1, q_2, \ldots, q_{n-1}, q_n \) that represents the computation of \(0^{(n)} \) in \(D \). In fact, since \(D \) is a DFA that recognizes \(A_{n+1} \), \(S \) is the only accepting sequence of \(D \).

We can see that \(S \) can contain no repeats (if it did, it would contain a loop, in which case we could construct a string \(w' \notin A_{n+1} \) that is accepted by \(D \)). So, each \(q_i \in S \) is distinct. We construct a machine \(D' \) as follows: \(D' \) is identical with \(D \) except that \(q_n \) has been removed and \(q_{n-1} \) is the new accept state. We claim that \(D' \) is a DFA with \(n - 1 \) states that recognizes \(A_n \).

Since \(D \) contains no loops, the sequence \(S' = q_1, q_2, \ldots, q_{n-1} \) is an accepting computation for \(0^{(n-1)} \) in \(D' \). Suppose \(D' \) accepts some other string \(z \neq 0^{(n-1)} \). Then, by construction of \(D' \), \(D \) accepts some string \(z \circ '0' \neq 0^{(n)} \), and so does not recognize \(A_{n+1} \). This contradicts our supposition, so \(D' \) recognizes \(A_n \). However, by the inductive hypothesis, there is no \(n - 1 \) state DFA that recognizes \(A_n \), so there is no \(n \) state DFA that recognizes \(A_{n+1} \).

Therefore, the result is proved.