Problem 1

A universal Turing machine is one that simulates another Turning machine given its definition. This is not unusual, we use compilers every day, and we have all probably compiled a C program using a compiler written in C. Assume we have a Turing machine M which is given as input a triple (T, x, n). T is a Turing machine, x is an valid input to T, and n is an integer. Write a high level description of M which decides the following language:

$L = \{\langle T, x, n \rangle \mid T \text{ is a turing machine and } T \text{ accepts } x \text{ within } n \text{ steps} \}$

Idea

L places an upper bound n on the number of steps a machine may run before it accepts. So, we can simply run T on x for n steps and accept if and only if T accepts in that time: if T accepts on x within n steps, $\langle T, x, n \rangle \in L$, otherwise, it is not.

High level description

M : "on input $\langle T, x, n \rangle$

1. Run T on x for n steps.

 a. If, after n steps T accepts, accept;

 b. Otherwise, reject."
Problem 2

Part A

Consider the problem

\[A = \{ (M, w) | M \text{ moves left at some point during its computation on } w \} \]

Show that \(A \) is decidable.

Proof Idea

Suppose that a machine \(M \) has \(n \) states. If \(M \) is started on an input \(w \), then in a finite number of steps (equal the length \(n \) of the input \(w \)) we can determine if \(M \) moves left while reading \(w \). As \(M \) moves to the right of \(w \), reading only blanks, it can move right only at most \(m \) times without looping. This is because each state has a single instruction for what to do when reading a \(B \). So, if \(M \) reads a \(B \) \(m + 1 \) times then, by the pigeonhole principle, it must enter one of its states at least twice.

This means that, in \(m + n + 1 \) moves, we can determine if \(M \) moves left at least once.

Proof. In order to show that \(A \) is decidable, we will construct a machine \(N \) and prove that \(N \) decides \(A \). \(N \) will take as input a machine-input pair \(< M, w > \), such that the number of \(M \)'s states is \(m \) and the length of \(w \) is \(n \).

Define \(N \): "on input \(< M, w > \)

1. Run \(M \) on \(w \) for \(n \) steps.
2. If, during any one of those steps, \(M \) moves left, accept.
3. Continue running \(M \) on \(w \) for \(m + 1 \) steps.
4. If, during any one of those steps, \(M \) moves left, accept.
5. Else reject.

\(N \) decides \(A \):

Since \(N \) always halts after a finite number of steps in either an accepting or rejecting state, there are only two cases we need to consider. First, suppose \(N \) accepts on input \(< M, w > \). Then \(M \) moves left in either \(n \) steps or \(m + n + 1 \) steps. Therefore, \(M \) moves left on \(w \) and \(< M, w > \in A \).

Suppose \(N \) rejects on \(< M, w > \). Then \(M \) does not move left on \(w \) in \(m + n + 1 \) steps. If \(M \) does not move left in \(n \) steps, then \(C_n = s_1 s_2 \ldots s_n q_i \), for some \(i \) (i.e. at step \(n \), \(M \) is reading the first blank after the end of the input string).

For any \(q_j \in Q \), there is exactly one instruction of the form:

\[< q_j, B > \to < q_k, a, d > \] (otherwise \(M \) would have conflicting instructions).

Further, if \(M \) does not move left in \(p = m + n + 1 \) steps, then \(C_p = s_1 s_2 \ldots s_n \ldots s_p q_r \), for some \(r \), where \(p - n = m + 1 \). Since \(M \) has only \(m \) states, each state has exactly one instruction for reading \(B \), and \(M \) reads only \(B \)'s from \(s_n \) to \(s_p \), by the pigeonhole principle \(M \) must repeat some state \(q_e \) in some \(C_x \), for \(n \leq x \leq p \). Suppose without loss of generality, that \(r = e \), that is, that the state \(M \) enters in \(C_p \) is the repeated state. Because \(M \) is reading a \(B \) in \(C_p \), and we know that \(M \) moves right when it reads a \(B \) in state \(q_e \), \(C_y = s_1 s_2 \ldots s_y q_e \), for any \(x \geq p \). Less formally, we know that \(M \) has entered an infinite loop and will move right forever.

Therefore, \(< M, w > \notin A \). \(\square \)
Part B
Consider the problem

\[B = \{ \langle M, w \rangle | M \text{ moves left at least 4 times during its computation on } w \} \]

Is B decidable? Why or why not?

Answer

B is decidable.

Proof Idea

From Part B, we know that if \(M \) moves left at all, it will move left in \(m + n + 1 \) steps. We will place an upper bound on the size of the string to the right of the tapehead after \(p \) left moves. This will put an upper bound on the number of steps that must be checked to determine if \(M \) moves left \(p + 1 \) times. (As in Part A, \(q \) is the number of \(M \)'s states, and \(n \) the length of its input.)

Proof. Suppose \(M \) moves left \(p \) number of times, for arbitrary \(p \). \(M \) is, then, in some configuration \(C_h = s_1s_2\ldots q_t s_j \ldots s_k \), where \(s_k \) is the last non-blank symbol before the infinite, unbroken string of \(B \)'s to the right. Since for any \(k \) and \(j \), \(k - j \) is finite, for the \(p^{th} \) left move there will be a finite string \(S_p \) of symbols to right of the tapehead after the move.

By the reasoning in Part A, in order to determine whether or not \(M \) makes a \(p + 1^{th} \) left move, we must to run \(M \) at most \(|S_p| + m + 1 \) steps. So, in general, in order to determine if \(M \) makes \(p \) left moves, we must run \(M \) at most

\[
\sum_{i=0}^{p} |S_i| + (m + 1) \text{ steps.}
\]

Where \(|S_i| \) = the length of \(S_i \), and \(|S_0| \) = the length of the input. Therefore, in order to determine if \(M \) makes four left moves, we must run \(M \) at most

\[
(|S_0| + m + 1) + (|S_1| + m + 1) + (|S_2| + m + 1) + (|S_3| + m + 1) = \text{ steps.}
\]

Since each of the \(S_i \)'s is finite in length, there is a finite upper bound on the number of steps it takes to determine if \(M \) makes four left moves. Therefore, \(B \) is decidable. \(\square \)
Problem 3

A language, L_1, can be concatenated with another language, L_2 (denoted $L_1 \circ L_2$) as follows:

$$s \in L_1 \circ L_2 \iff s = s_1 \circ s_2 \text{ for some } s_1 \in L_1 \text{ and some } s_2 \in L_2$$

We can repeat this construction to create $L_1 \circ L_2 \circ L_3$

Prove that if L_1 and L_2 are decidable then $L_1 \circ L_2 \circ \overline{L_1}$ is decidable. ($\overline{L_1}$ is the compliment of L_1.)

Proof Idea

In order to determine if a string $s = w_1 \circ w_2 \circ w_3 \in L_1 \circ L_2 \circ \overline{L_1}$, we must determine if there is some way of dividing s into w_1, w_2, and w_3 such that $w_1 \in L_1$, $w_2 \in L_2$, and $w_3 \in \overline{L_1}$. In order to make this determination, we must test every possible way of dividing s into three consecutive strings. Since there are only a finite number of ways of making this division, there are only a finite number of checks to do. Therefore, $L_1 \circ L_2 \circ \overline{L_1}$ is decidable.

Proof. Because L_1 and L_2 are decidable, there exist machines M_1 and M_2 that decide L_1 and L_2 respectively.

Define M_{10201}: on input $\langle w \rangle$:

Let $n = |w|$, or, the length of w and let $w[h-k]$ be the substring of w consisting of the hth symbol through the kth symbol.

1. For $i = 0$,
 a. For $j = 0$,
 i. Partition w into $x = w[0-i]$, $y = w[i+1-k]$, and $z = w[k+1-n]$.
 ii. Simulate M_1 on x.
 If M_1 accepts, then, or
 iii. Simulate M_2 on y.
 If M_2 accepts, then
 iv. Simulate M_1 on z.
 If M_1 rejects, accept.

2. Reject.

Each input can be split into 3 pieces a finite number of ways, and thus M_{10201} has a finite number possible checks for s. Because each partition only requires simulating 3 machines, each of which is a decider, the computation for each has a finite time length. If M_1 accepts x, M_2 accepts y, and M_1 rejects z, this indicates that a partition $w_1w_2w_3$ has been found such that $w_1 \in L_1$, $w_2 \in L_2$, and $w_3 \in \overline{L_1}$. If one of these is not the case, such a partition has not been found. If any partition is found, the machine accepts, otherwise it rejects. Thus, this machine is a decider for $L_1 \circ L_2 \circ \overline{L_1}$.

\[\square\]
Problem 4
Part A
Prove that the collection of decidable languages is closed under set difference.

Proof Idea
Given two decidable sets, A and B, the set difference $A - B$ is the set of things in A and not in B. Since B is decidable, \overline{B} is also decidable. Since A and \overline{B} are decidable, $A \cap \overline{B}$ is decidable, and $A \cap \overline{B} = A - B$. Therefore, $A - B$ is decidable.

Proof

Lemma 1: If B is decidable, \overline{B} is decidable.

If B is decidable, then there is some machine N which decides it- that is, accepts on input w if $w \in B$, and rejects on w if $w \notin B$. Construct a machine N' such that N' accepts if N rejects, and N' rejects if N accepts. N' decides \overline{B}.

Lemma 2: If A and B are decidable, then $A \cap B$ is decidable.

If A is decidable and B is decidable, then there are machines N_A and N_B which decide them. Construct a machine N such that for input w, N runs N_A and N_B on input w. If both N_A and N_B accept, then N accepts. Otherwise, N rejects. N decides $A \cap B$.

Suppose that sets A and B are decidable. By Lemma 1, \overline{B} is decidable. So, by Lemma 2, $A \cap \overline{B}$ is decidable. Since $A \cap \overline{B} = A - B$, the set difference $A - B$ is decidable.
Part B
Is the same true for computably enumerable (Turing-recognizable) languages?

Solution
The set of Turing-recognizable languages is not closed under set difference.

Proof idea
Take the difference of T (the set of all Turing machines) and A_{TM}. If the set of Turing-recognizable languages were closed under set difference, then this set difference would be recognizable. However, then the set A_{TM} would be decidable as we could always establish whether something was a Turing machine and in A_{TM} or a Turing machine and not in A_{TM}. Since A_{TM} is not decidable, the set of Turing-recognizable language is not closed under set difference.

Proof
[Proof by contradiction] Suppose the set of Turing-recognizable languages were closed under set difference. Let T be the set of Turing machines, and A_{TM} be the set of Turing machines M that accept on input $< M >$. T is decidable and, therefore, recognizable. A_{TM} is recognizable. So, by supposition, $T - A_{TM}$ is recognizable. Let N_A be some machine that recognizes A_{TM}, and N_D some machine that recognizes $T - A_{TM}$. Define a machine N as follows:

Define N: "on input w
1. Set i equal to 0
2. Repeat the following 5 steps:
 2a. Run N_A on w for i steps.
 2b. Run N_D on w for i steps.
 2c. If N_A accepts, accept.
 2d. If N_D accepts, reject.
 2e. Increment i, return to step 2a."

N decides A_{TM}. Since A_{TM} is not decidable, the set of Turing-recognizable languages is not closed under set difference.
Problem 5

Consider the language, L, defined below:

$$L = \{ \langle M, x \rangle \mid M \text{ halts on input } x \text{ and during the computation it enters at least 10 different non-halting states at least once.} \}$$

Prove that L is undecidable.

Proof idea

[Proof by contradiction] We suppose that L is decidable, and infer that there is a machine M_L that decides it. If M_L accepts on $\langle M, x \rangle$, that means that M halts on x after entering at least 10 non-halting states. If M_L rejects on $\langle M, x \rangle$, that means that either M did not halt on x, or that M did not enter 10 non-halting states.

We construct a machine M_{10} that runs through 10 non-halting states without changing the input, and use M_{10} and M_L to decide HALT.

To decide HALT, we must determine for arbitrary N and w whether M halts on x. By 'hooking' M_{10} to N, we construct the machine $M_{10} \rightarrow N$. We then run M_L on input $\langle M_{10} \rightarrow N, w \rangle$. Since we know that $M_{10} \rightarrow N$ enters 10 non-halting states, if M_L accepts, it means that N halts on w. Likewise, if M_L rejects, it means that N does not halt on w. Therefore, we have a general procedure for deciding HALT.

Proof. Suppose L is decidable. Then there is some machine M_L which decides it.

Define M_{10}: "on input w

1. Start in state $q_{1'}$.
2. Transition into $q_{2'}$, do not change the tape, and move right.
3. Transition into $q_{3'}$, do not change the tape, and move left.
4. Transition into $q_{4'}$, do not change the tape, and move right.
5. Transition into $q_{5'}$, do not change the tape, and move left.
6. Transition into $q_{6'}$, do not change the tape, and move right.
7. Transition into $q_{7'}$, do not change the tape, and move left.
8. Transition into $q_{8'}$, do not change the tape, and move right.
9. Transition into $q_{9'}$, do not change the tape, and move left.
10. Transition into $q_{10'}$, do not change the tape, and move right.
11. Transition into $q_{11'}$, do not change the tape, and move left.

For arbitrary N, construct a machine $M_{10} \rightarrow N$ by setting M_{10}’s accepting state to N’s start state. So, $M_{10} \rightarrow N$’s start state is M_{10}’s start state, and $M_{10} \rightarrow N$’s accepting/rejecting states are the same as N’s. Also, since M_{10} halts with its tapehead at the beginning of the tape without changing the input, $M_{10} \rightarrow N$ is equivalent to N.

Run M_L on input $\langle M_{10} \rightarrow N, w \rangle$ for arbitrary w. Since M_L is a decider, it either accepts or rejects on $\langle M_{10} \rightarrow N, w \rangle$.

Suppose M_L accepts on $\langle M_{10} \rightarrow N, w \rangle$. Then $M_{10} \rightarrow N$ enters 10 non-halting states and halts on w. Since $M_{10} \rightarrow N$ is equivalent to N, N halts on w. So, $\langle N, w \rangle \in \text{HALT}$.
Suppose M_L rejects on $< M_{10} \rightarrow N, w >$. Then $M_{10} \rightarrow N$ either does not enter 10 non-halting states, or does not halt on w. By construction, $M_{10} \rightarrow N$ enters 10 non-halting states. Therefore, $M_{10} \rightarrow N$ does not halt on w. Since $M_{10} \rightarrow N$ is equivalent to N, N does not halt on w. So, $< N, w > \notin HALT$.

Define M_{HALT}: "on input $< N, w >$

1. Construct $M_{10} \rightarrow N$.
2. Run M_L on $< M_{10} \rightarrow N, w >$.
3. If M_L accepts, accept.
4. If M_L rejects, reject.

M_{HALT} decides $HALT$. Since $HALT$ is not decidable and M_{HALT} is constructed from M_L, L is not decidable.