Problem 1

Recall the language:
\[K = \{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle \} \]

Prove that \(\text{HALT} \leq_m K \).

Definition

\(A \leq_m B \) (there is a reduction from \(A \) to \(B \)) if there is a computable function \(f : \Sigma^* \to \Sigma^* \) such that for every \(w \in \Sigma^* \), \(w \in A \iff f(w) \in B \).

Proof idea

We characterize each set in the following table.

<table>
<thead>
<tr>
<th></th>
<th>(\text{HALT}, \langle M, w \rangle)</th>
<th>(K, \langle M \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>(M \text{ accepts or rejects on input } w)</td>
<td>(M \text{ accepts on input } \langle M \rangle)</td>
</tr>
<tr>
<td>OUT</td>
<td>(M \text{ loops on input } w)</td>
<td>(M \text{ rejects or loops on input } \langle M \rangle)</td>
</tr>
</tbody>
</table>

We define a machine \(M' \) which accepts on every input if and only if \(M \) halts on \(w \), for a given \(M \) and \(w \). We define \(f(\langle M, w \rangle) = M' \). Since the construction of \(M' \) can be performed by a Turing machine, and \(M' \) accepts everything (including its own code \(\langle M' \rangle \)) if and only if \(M \) accepts \(w \), \(\langle M, w \rangle \in \text{HALT} \iff f(\langle M, w \rangle) \in K \).

Proof. The function \(f(\langle M, x \rangle) = M' \) defined as follows:

\(M' : " \text{on input } \langle x \rangle \)

i. Run \(M \) on \(w \).

(a) If \(M \) accepts, ACCEPT.
(b) If \(M \) rejects, ACCEPT."

\(f \) is computable. Since the set of Turing machines is computable, there is an ordered enumeration \(E = M_1, M_2, M_3, \ldots \) of these machines. Given \(E \), the function \(g(\langle M \rangle) = i \) is computable, where \(i \) is the index of \(M \) in \(E \). Since \(f(\langle M, w \rangle) = M_g(\langle M' \rangle) \) and \(g(\langle M' \rangle) \) is computable, \(f \) is computable.

Suppose \(\langle M, w \rangle \in \text{HALT} \). Then \(M \) halts and either accepts or rejects on input \(w \). In either case, \(M' \) accepts on every input. So, if \(M \) accepts on \(w \), then \(M' \) accepts on every input and so accepts \(\langle M \rangle \). And, if \(M \) rejects on \(w \), then \(M' \) accepts on every input and so accepts \(\langle M \rangle \). Therefore, if \(\langle M, w \rangle \in \text{HALT} \) then \(f(\langle M, x \rangle) \in K \).

Suppose \(\langle M, w \rangle \not\in \text{HALT} \). Then \(M \) does not halt on \(w \), and \(M' \) halts on, and so accepts, no input. So, if \(M \) does not halt on \(w \), then \(M' \) does not accept anything, and so does not accept \(\langle M \rangle \). Therefore, if \(\langle M, w \rangle \not\in \text{HALT} \) then \(f(\langle M, x \rangle) \not\in K \) □
Problem 2

Prove that $K \leq_m \text{HALT}$.

Proof idea

We want to show that for some computable function f, for any $\langle M \rangle \in \Sigma^*$,

$$\langle M \rangle \in K \iff f(\langle M \rangle) \in \text{HALT}$$

The sets are characterized in the table in Problem 1.

We define a machine M' which halts on an input x iff M accepts on $\langle M \rangle$. By the same reasoning as in Problem 1, this proves that $K \leq_m \text{HALT}$

Proof. The function $f(\langle M \rangle) = \langle M', \langle 1 \rangle \rangle$, with M' defined as follows:

$M' :$ "on input x

1. Run M on $\langle M \rangle$.

 (a) If M accepts, ACCEPT.

 (b) If M rejects, LOOP."

By the same reasoning as in Problem 1, $f(\langle M \rangle)$ is computable.

Suppose $\langle M \rangle \in K$. Then M accepts (and halts) on input $\langle M \rangle$, so M' accepts (and halts) on all inputs, and, so, halts on $\langle 1 \rangle$. Therefore, $f(\langle M \rangle) \in \text{HALT}$.

Suppose $\langle M \rangle \notin K$. Then M either rejects or loops on input $\langle M \rangle$, so M' loops on all inputs and, so, loops on $\langle 1 \rangle$. Therefore, $f(\langle M \rangle) \notin \text{HALT}$.

Therefore, $\langle M \rangle \in K \iff f(\langle M \rangle) \in \text{HALT}$. \qed
Problem 3

Consider the language:

\[Q = \{ \langle M, w, q \rangle | M \text{ enters state } q \text{ at least once during its computation on } w \} \]

Prove that HALT \(\leq_m Q \).

Proof idea

We want to show that for some computable function \(f \), for any \(\langle M, w \rangle \in \Sigma^* \),

\[(M, w) \in HALT \iff f(\langle M, w \rangle) \in Q \]

We characterize each set in the following table.

<table>
<thead>
<tr>
<th></th>
<th>HALT, (\langle M, w \rangle)</th>
<th>Q, (\langle M, w, q \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>(\langle M, w \rangle)</td>
<td>(\langle M, w, q \rangle)</td>
</tr>
<tr>
<td></td>
<td>(M) accepts or rejects on</td>
<td>(M) enters state (q) at</td>
</tr>
<tr>
<td></td>
<td>(w)</td>
<td>least once in its computation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on (w)</td>
</tr>
<tr>
<td>OUT</td>
<td>(M) loops on (w)</td>
<td>(M) never enters state (q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in its computation on (w)</td>
</tr>
</tbody>
</table>

We define a machine which enters state \(q \) in its computation on \(w \) iff \(M \) halts on \(w \). By the same reasoning in Problem 1, this shows that HALT \(\leq_m Q \).

Proof. The function \(f(\langle M, w \rangle) = \langle M', (1), q_0 \rangle \), with \(M' \) defined as follows:

\(M' : \) "on input \(x \)

i. Run \(M \) on \(w \).

(a) If \(M \) accepts or rejects,

i. Transition to state \(q_0 \)
ii. ACCEPT.

Where \(q_0 \) is the final halting and accepting state in any computation of \(M' \).

\(f \) is computable. Since the set of Turing machines is computable, there is an ordered enumeration \(E = M_1, M_2, M_3, \ldots \) of these machines. Claim: for some \(M_i \) in \(E \), \(M_i = M' \). We know this because if we take a TM \(M'' \) which is equivalent to \(M' \), but in which the final state is not \(q_0 \), we can construct \(M' \) from \(M'' \) by changing the final accepting state of \(M'' \) to \(q_0 \) (if \(q_0 \) is already a state of \(M'' \), then we swap it with the final accepting state). So, by the same reasoning as in Problem 1, \(f \) is computable.

Suppose \(\langle M, w \rangle \in HALT \). Then \(M \) halts (either accepting or rejecting) on input \(w \) and, so, \(M' \) accepts all inputs (including \((1) \)) and \(q_0 \) in the the computation of those inputs. Therefore, \(f(\langle M, w \rangle) = \langle M', (1), q_0 \rangle \in Q \).

Suppose \(\langle M, w \rangle \notin HALT \). Then \(M \) does not halt on input \(w \) and, so, \(M' \) loops on all inputs (including \((1) \)) and never enters \(q_0 \) in the the computation of those inputs. Therefore, \(f(\langle M, w \rangle) \notin Q \).

Therefore, HALT \(\leq_m Q \). \(\square \)
Problem 4
Consider the language:
\[
2P = \{ \langle M \rangle | M \text{ accepts at least 2 palindromes, } \Sigma = \{0, 1\} \}
\]
Prove that $\text{HALT} \leq_m 2P$.

Proof idea
We want to show that for some computable function f, for any $\langle M, w \rangle \in \Sigma^*$,
\[
\langle M, w \rangle \in \text{HALT} \iff f(\langle M, w \rangle) \in 2P
\]
We characterize each set in the following table.

<table>
<thead>
<tr>
<th>$\text{HALT, } \langle M, w \rangle$</th>
<th>$\text{2P, } \langle M \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{IN } w$</td>
<td>$\text{M accepts or rejects on } w$</td>
</tr>
<tr>
<td>$\text{OUT } w$</td>
<td>$\text{M loops on } w$</td>
</tr>
</tbody>
</table>

We define a machine which accepts two palindromes iff M halts on w. By the same reasoning
in Problem 1, this shows that $\text{HALT} \leq_m 2P$.

Proof. The function $f(\langle M, w \rangle) = \langle M' \rangle$, with M' defined as follows:

M' : "on input x

i. Run M on w.

(a) If M accepts, ACCEPT.
(b) If M rejects, ACCEPT.

By the same reasoning in Problem 1, f is computable.
Suppose $\langle M, w \rangle \in \text{HALT}$. Then M halts, either accepting or rejecting, on input w. So M'
accepts on all inputs, including two palindromes. So $f(\langle M, w \rangle) \in 2P$.
Suppose $\langle M, w \rangle \notin \text{HALT}$. Then M does not halt on input w, so M' loops on all inputs and
accepts nothing. So M' does not accept at least two palindromes. Therefore, $f(\langle M, w \rangle) \notin 2P$.

Therefore, $\text{HALT} \leq_m 2P$. \qed
Problem 5
Prove that $2P \leq_m \text{HALT}$.

Proof idea
We want to show that for some computable function f, for any $\langle M \rangle \in \Sigma^*$,

$$\langle M \rangle \in 2P \iff f(\langle M \rangle) \in \text{HALT}$$

The sets are characterized in the table above.

We define a machine which halts on an input iff M accepts two palindromes. By the same reasoning in Problem 1, this shows that $2P \leq_m \text{HALT}$.

Proof. The function $f(\langle M \rangle) = \langle M', (1) \rangle$, with M' defined as follows:

$M' : \ "on \ input \ x$

i. Run M on serially on each possible input.

(a) If, at any point, M accepts two palindromes, ACCEPT.

f is computable. Using the same algorithm as in Homework 3, we can iterate through every input. Starting with i_0, for every $i_x \in \Sigma^*$, and for every $y \leq x$, run M on i_y for x steps. Since M' picks out a Turing machine, by the same reasoning as in Problem 1, f is computable.

Suppose $\langle M \rangle \in 2P$. Then M accepts at least two palindromes, and M halts on all inputs. So $f(\langle M \rangle) \in \text{HALT}$.

Suppose $\langle M \rangle \not\in 2P$. Then M accepts either zero or one palindrome. So, M' loops on all inputs, including (1). Therefore, $f(\langle M \rangle) \not\in \text{HALT}$.

Therefore, $2P \leq_m \text{HALT}$.

\Box