Problem 1

Prove that for any two languages \(A, B \), if \(A \leq_m B \) then \(\overline{A} \leq_m \overline{B} \)

Proof idea

We suppose \(A \leq_m B \) and infer the existence of a computable function. The same function allows us to infer \(\overline{A} \leq_m \overline{B} \).

Proof. Suppose \(A \leq_m B \). Then there is some function \(f \) such that

\[
\begin{align*}
 w \in A &\rightarrow f(w) \in B \quad \text{and} \quad (1) \\
 w \notin A &\rightarrow f(w) \notin B \quad \text{and} \quad (2)
\end{align*}
\]

Further, for any set \(X \),

\[
 w \in X \iff w \notin \overline{X} \quad (3)
\]

So, by (1) and (3),

\[
 w \notin \overline{A} \rightarrow f(w) \notin \overline{B}
\]

and, by (2) and (3),

\[
 w \in \overline{A} \rightarrow f(w) \in \overline{B}
\]

Since \(f \) is computable by supposition, \(\overline{A} \leq_m \overline{B} \). \(\square \)
Problem 2

Consider the hometown problem from recitation where, a FLINT machine is a Turing machine that does not accept the string “ben”, and a BOSTON machine is a Turing machine that does accept the string “ben”.

Consider the language

\[HOMETOWN = \{ \langle F, B \rangle \mid F \text{ is a FLINT machine and } B \text{ is a BOSTON machine} \} \]

Prove that \(HOMETOWN \) does not many one reduce to \(HALT \), \(HOMETOWN \not\leq_m HALT \).

Proof idea

We will show that \(HALT \) does many-one reduce to \(HOMETOWN \). Since \(HALT \) does not many-one reduce to \(HALT \), \(HOMETOWN \) does not many-one reduce to \(HALT \).

More formally, \(HOMETOWN \) is not computably enumerable, and \(HALT \) is. For any \(X \) and \(Y \), if \(X \leq_m Y \) and \(Y \) is computably enumerable, then \(X \) is computably enumerable. Therefore, \(HOMETOWN \not\leq_m HALT \).

Proof. \(HALT \leq_m HOMETOWN \) if and only if, there is a function \(f \) such that for any \(w \in \Sigma^* \)

\[w \in \overline{HALT} \iff f(w) \in HOMETOWN \]

Let \(f((M, w)) = \langle N, N' \rangle \) with \(N \) and \(N' \) defined as follows.

Define \(N \): "on input \(x \)

i. Run \(M \) on input \(w \).
 (a) If \(M \) accepts, ACCEPT.
 (b) if \(M \) rejects, ACCEPT."

Define \(N' \): "on input \(x \)

i. ACCEPT."

Since \(N \) and \(N' \) are valid Turing machines (all operations are finite, no loops are detected, etc.), \(f \) is computable.

Suppose \(\langle M, w \rangle \in HALT \). Then, \(N \) loops on all inputs (including ‘ben’) and \(N' \) accepts all inputs (including ‘ben’). Therefore, \(N \) is a FLINT machine and \(N' \) is a BOSTON machine. So \(f((M', w)) \in HOMETOWN \).

Suppose \(\langle M, w \rangle \not\in HALT \). Then \(\langle M, w \rangle \in HALT \) and both \(N \) and \(N' \) accept any input (including ‘ben’). So \(N \) is not a FLINT machine. Therefore, \(f((M', w)) \not\in HOMETOWN \).

Suppose \(HOMETOWN \leq_m HALT \). Then, since \(HALT \) is computably enumerable, \(HOMETOWN \) is computably enumerable. Since \(HALT \leq_m HOMETOWN \), \(HOMETOWN \) is not computably enumerable. Therefore, \(HALT, HOMETOWN \not\leq_m HALT \). □
Problem 3

Prove that $HOMETOWN \leq_T HALT$

Definition

A is Turing reducible to B ($A \leq_T B$) if A is decidable relative to B. In other words, if a decision procedure exists for B, then one also exists for A.

An oracle for a language A is such that when ‘queried’ about a particular $w \in \Sigma^*$, always responds either ‘yes’ or ‘no’ depending on whether or not $w \in A$.

Proof idea

Suppose an oracle exists for $HALT$. Define machine M^{HALT}_{HOME} as follows.

Define M^{HALT}_{HOME}: "on input $\langle M, N \rangle$

i. Query $\langle M, \text{‘ben’} \rangle \in HALT$.

ii. If ‘no’, CONTINUE.

iii. If ‘yes’, run M on ‘ben’.

 (a) If M accepts, REJECT.
 (b) If M rejects, CONTINUE.

iv. Query $\langle N, \text{‘ben’} \rangle \in HALT$.

v. If ‘no’, REJECT.

vi. If ‘yes’, run N on ‘ben’

 (a) If N accepts, ACCEPT.
 (b) If N rejects, REJECT.

Suppose $\langle M, N \rangle \in HOMETOWN$. Then, on input ‘ben’, M either rejects or loops, and N accepts. If M loops, then when queried on $\langle M, \text{‘ben’} \rangle$, the oracle responds ‘no’ and M^{HALT}_{HOME} continues to instruction iii. If M rejects, then when queried on $\langle M, \text{‘ben’} \rangle$, the oracle responds ‘yes’ and M^{HALT}_{HOME} continues to instruction iii. Since N accepts, when queried on $\langle N, \text{‘ben’} \rangle$, the oracle responds ‘yes’ and M^{HALT}_{HOME} accepts.

Suppose $\langle M, N \rangle \not\in HOMETOWN$. Then, on input ‘ben’, either M accepts, or N rejects or loops. If M accepts, then when queried on $\langle M, \text{‘ben’} \rangle$, the oracle responds ‘yes’, and M^{HALT}_{HOME} rejects. If N loops, then when queried on $\langle N, \text{‘ben’} \rangle$, the oracle response ‘no’ and M^{HALT}_{HOME} rejects. If N rejects, then when queried on $\langle N, \text{‘ben’} \rangle$, the oracle responds ‘yes’ and M^{HALT}_{HOME} rejects.

So, M^{HALT}_{HOME} accepts if $\langle M, N \rangle \in HOMETOWN$, and M^{HALT}_{HOME} rejects if $\langle M, N \rangle \not\in HOMETOWN$.

Therefore, $HOMETOWN$ is decidable.

Therefore, $HOMETOWN \leq_T HALT$.

3
Problem 4

Show that for any two languages A and B, a language J exists, where $A \leq_T J$ and $B \leq_T J$.

Proof idea

We designate J to be the set of pairs $\langle x, A \rangle$ and $\langle y, B \rangle$ such that $x \in A$ and $y \in B$. Intuitively, we might think of J as containing all the members of both A and B, and ‘tagging’ each element with the set that it belongs to. Given such a definition, it is trivial to show that a decision procedure for J yields a decision procedure for both A and B.

Proof. Let

$$J = \{ \langle x, A \rangle \mid x \in A \} \cup \{ \langle y, B \rangle \mid y \in B \}$$

Suppose there is an oracle for J. We define a machine M_A which decides A below, and prove by cases that M_A decides A. A machine to decide B, and cases for B, are similar.

Define M_A: "on input w

i. Query $\langle w, A \rangle \in J$.

ii. If ‘yes’, ACCEPT.

iii. If ‘no’, REJECT.

Suppose $x \in A$. Then, by definition, $\langle x, A \rangle \in J$. So, when queried on $\langle w, A \rangle$, the oracle responds ‘yes’. So, M_A accepts.

Suppose $x \not\in A$. Then, by definition, $\langle x, A \rangle \not\in J$. So, when queried on $\langle w, A \rangle$, the oracle responds ‘no’. So, M_A rejects.

Since the case for B is similar, A and B are both decidable relative to J. So, $A \leq_T J$ and $B \leq_T J$. \square
Problem 5

Consider the following language

\[L = \{ w | w = 0x \text{ for some } x \in K \text{ or } w = 1x \text{ for some } x \in \overline{K} \} \]

Show that neither \(L \) nor \(\overline{L} \) are recognizable.

Proof idea

We many-one reduce \(K \) and \(\overline{K} \) to \(L \). In reducing \(K \) to \(L \) we show, by the result in problem 1, that \(\overline{K} \) reduces to \(\overline{L} \), which shows \(\overline{L} \) to be unrecognizable. In reducing \(\overline{K} \) to \(L \), we show \(L \) to be unrecognizable.

Proof. \(K \leq_m L \).

Define \(f \):

\[f(M) = 0\langle M \rangle \]

If \(\langle M \rangle \in K \), then \(M \) accepts on \(\langle M \rangle \), so \(0\langle M \rangle \in L \). So, \(f(M) \in L \).

If \(\langle M \rangle \notin K \), then \(M \) does not accept on \(\langle M \rangle \), so \(0\langle M \rangle \notin L \). So, \(f(M) \notin L \). \(\square \)

Proof. \(\overline{K} \leq_m L \).

Define \(f \):

\[f(M) = 1\langle M \rangle \]

If \(\langle M \rangle \in \overline{K} \), then \(M \) does not accept on \(\langle M \rangle \), so \(1\langle M \rangle \in L \). So, \(f(M) \in L \).

If \(\langle M \rangle \notin \overline{K} \), then \(M \) accepts on \(\langle M \rangle \), so \(0\langle M \rangle \notin L \). So, \(f(M) \notin L \). \(\square \)

Proof. \(K \leq_m L \), so, by the result in problem 1, \(\overline{K} \leq_m \overline{L} \). Since \(K \) is undecidable, \(\overline{L} \) is undecidable. Also, since \(\overline{K} \leq_m L \), and \(\overline{K} \) is undecidable, \(L \) is undecidable. \(\square \)