Problem 1

Consider the problem of determining whether a Turing machine M on an input w ever attempts to move its head left when its head is on the left-most tape cell. Formulate this problem as a language and show that it is undecidable.

Proof by Contradiction.

$L_{TM} = \{ <M, w> | M$ on w tries moving its head left from the leftmost tape cell, at some point in its computation $\}$. Assume to the contrary that TM R decides L_{TM}. Construct TM S that uses R to decide A_{TM}.

$S = \text{ "On input } <M, w>:\$

1. Convert M to M', where M' first moves its input over one square to the right and writes new symbol $\$ on the leftmost tape cell. Then M' simulates M on the input. If M' ever sees $\$ then M' moves its head one square right and remains in the same state. If M accepts, M' moves its head all the way to the left and them moves left off the leftmost tape cell.

2. Run R, the decider for L_{TM}, on $<M', w>$.

3. If R accepts then accept. If it rejects, reject”

TM S decides A_{TM} because M' only moves left from the leftmost tape cell when M accepts w. S never attempts that move during the course of the simulation because we put the $\$ to ”intercept” such moves if made by M.

Problem 2

Consider the problem of determining whether a Turing machine M on an input w ever attempts to move its head left at any point during its computation. Formulate this problem as a language and show that it is decidable.
Let \(LM_{TM} = \{ < M, w > | M \text{ ever moves left while computing on } w \} \). \(LM_{TM} \) is decidable. Let \(M_{LEFT} \) be the TM which on input \(< M, w > \) determines the number of states \(n_M \) of \(M \) and then simulates \(M \) on \(w \) for \(|w| + n_M + 1 \) steps. If \(M_{LEFT} \) discovers that \(M \) moves left during that simulation, \(M_{LEFT} \) accepts \(< M, w > \). Otherwise \(M_{LEFT} \) rejects \(< M, w > \).

The reason that \(M_{LEFT} \) can reject without simulating \(M \) further is as follows. Suppose \(M \) does make a left move on input \(w \). Let \(p = q_0, q_1, \ldots, q_s \) be the shortest computation path of \(M \) on \(w \) ending in a left move. Because \(M \) has been scanning only blanks (it’s been moving right) since state \(q|w| \), we may remove any cycles that appear after this state and be left with a legal computation path of the machine ending in a left move. Hence \(p \) has no cycles and must have length at most \(|w| + n_M + 1 \). Hence \(M_{LEFT} \) would have accepted \(< M, w > \), as desired.

Problem 3

Suppose \(A \) and \(B \) are languages and \(A \leq_m B \).

Prove the if \(A \) is undecidable, then \(B \) is undecidable.

Proof by Contradiction.

Assume, for the sake of contradiction, that \(B \) is decidable. Then there exists a Turing machine \(D_B \) that decides \(B \). By the definition of a decider, if \(b \in B \), then \(D_B \) accepts the input \(b \). If \(b \notin B \), then \(D_B \) rejects on input \(b \).

Since \(A \leq_m B \), there exists a computable function \(f \) such that if \(a \in A \), then \(f(a) \in B \), and if \(a \notin A \), then \(f(b) \notin B \). By the definition of computable, \(f \) completes in a finite amount of time on all inputs.

Consider the machine \(D_A \) on input \(a \):

1. Let \(b = f(a) \)
2. Run \(D_B \) on input \(b \)

 (a) If \(D_B \) accepted \(b \), then ACCEPT
 (b) If \(D_B \) rejected \(b \), then REJECT

Observe that \(D_A \) halts on all inputs. Step 1 runs the function \(f \). Since \(f \) is computable, this is a finite step. Step 2 runs \(D_B \). Since \(D_B \) is a decider, it halts in a finite amount of time.

We claim that \(D_A \) is a decider for \(A \).

Case analysis: For any element \(x \), there are two cases: \(x \) is in \(A \) or it is not in \(A \). Suppose that we run \(D_A \) on input \(x \):

Case 1: \(x \in A \): By the definition of \(f \) above, \(f(a) \in B \) because \(a \in A \). So \(b \in B \). Therefore, in Step 2, \(D_B \) will accept \(b \), so \(M_A \) accepts.
Case 2: $x \notin A$: By the definition of f above, $f(a) \notin B$ because $a \notin A$. So $b \notin B$. Therefore, in Step 2, D_B will reject b, so M_A rejects.

For any element x, D_A accepts if x is in A and D_A rejects if x is not in A. Therefore, D_A is a decider for A, so A is decidable. However, this is a contradiction, as A is known to be undecidable. Therefore, our initial assumption must be incorrect. B is indeed undecidable. □