Practice Problem
Consider the language MINAJ: \(\{ \langle G, n, i, c, k, i' \rangle \mid G \text{ is a graph that has } n \text{ nodes and which can be partitioned into three pieces } G_1, G_2, \text{ and } G_3 \text{ of size } \frac{n}{3} \}\):

- \(G_1 \) has a ham-path from \(i \) to \(c \)
- \(G_2 \) has a clique of size \(k \)
- \(G_3 \) is \(i' \)-colorable

} Prove MINAJ is NP-complete.

Solution:
To show that MINAJ is in NP we construct the following algorithm.

\(N \) on input \(G, n, i, c, k, i' \)

1. Nondeterministically choose a partition of the graph \(G \) into three pieces, \(G_1, G_2, \) and \(G_3 \) each with \(\frac{n}{3} \) vertices.

2. From \(G_1 \) nondeterministically choose a permutation of the vertices in \(G_1 \) that begins with \(i \) and ends with \(c \). Check that for all \(j : 0 \text{ to } \frac{n}{3}, (v_j, v_{j+1}) \) is connected. If yes, continue, if no reject this path.

3. From \(G_2 \) nondeterministically choose a set of \(k \) vertices, check that all \(k \) are connected to each other and form a complete subgraph. If yes, continue, if no reject this path.

4. From \(G_3 \) nondeterministically choose an assignment of \(i' \) colors to each vertex in \(G_3 \). Check that that it is a valid coloring. If it is, ACCEPT, if no reject, this path.

To prove that is NP-complete, consider a reduction from CLIQUE defined as follows:

On input \(G, k \) output \(G', a, b, k, 2 \) with \(G', a, b \) defined as follows:

1. Let \(n \) be the number of vertices in our input graph, \(G \). Create a line graph of size \(n \), label one end \(a \), label the other end \(b \). Connect to some vertex in original \(G \).

2. Create a second line graph size \(n \) connect it to a different vertex in \(G \)

Output \(G', a, b, k, 2 \)

This graph can be partitioned into three pieces the two line graphs and the original graph. Notice that a line graph with \(a \) as an endpoint and \(b \) as the other endpoint will always have a ham-path from \(a \) to \(b \), so we are guaranteed to satisfy criteria 1. Similarly, a line graph is always 2 colorable, so we are guaranteed to have a valid coloring for criteria 3. If the original graph \(G \) had a clique of size \(k \) then we have satisfied criteria 2. If \(G \) did not have a clique of size \(k \), the two line graphs do not contribute to the clique as they only attach to one vertex in the original \(G \) so no partition of the new graph can create a clique of size \(k \). So we have a reduction from CLIQUE to MINAJ.

Note: We assume that \(k > 2 \) (This could be hard coded into the reduction if we wanted.)