Sipser: Chapter 1.4
THE PUMPING LEMMA
A non-regular language?
An FSA that decides...

$L = \{ \langle F, w \rangle \mid F \text{ is an FSA that accepts } w \}$
An FSA that decides...

$L = \{ w \mid w \text{ valid URL} \}$
An FSA that decides...

$L = \{ w \mid w \text{ is not a valid URL} \}$
An FSA that decides...

\[L = \{ w \mid w \text{ is a section of comments} \} \]

/* */
An FSA that decides...

$L = \{ w \mid w \text{ is a word in the dictionary} \}$
An FSA that decides...

\[L = \{ w \mid w \text{ is of the form } 0^31^3 \} \]
An FSA that decides...

$$L = \{ w \mid w \text{ is of the form } 0^n1^n \}$$
\[L = \{ w \mid w \text{ is of the form } 0^n1^n \} \]
L = \{ w | w \text{ is of the form } 0^n1^n \}\)

An FSA with p states
Input string of size 2p: 0^p1^p
FSA has p states, input is 0^p1^p
FSA has p states, input is 0^p1^p
FSA has p states, input is 0^p1^p
The Pumping Lemma

If \(L \) is a regular language then there is a number \(p \), such that any input string longer than \(p \) can be split into sections \(x, y, \) and \(z \), such that:

1.) For each \(i \geq 0 \), \(xy^iz \in L \)

2.) \(|y| > 0 \)

3.) \(|xy| \leq p \)
The Pumping Lemma

If L is a regular language then there is a number p, such that any input string longer than p can be split into sections x, y, and z, such that:

1.) For each $i \geq 0$, $xy^iz \in L$
2.) $|y| > 0$
3.) $|xy| \leq p$
L = \{ \, w w \mid w \in \{0, 1\}^* \, \} \\

1.) Assume L is regular and thus has pumping length p \\

2.) Let the input be 0^p10^p1 (w = 0^p1) \\

3.) 0^p10^p1 = xyz, so where do we put y?
The Pumping Lemma

If \(L \) is a regular language then there is a number \(p \), such that any input string longer than \(p \) can be split into sections \(x, y, \) and \(z \), such that:

1.) For each \(i \geq 0 \), \(xy^iz \in L \)

2.) \(|y| > 0 \)

3.) \(|xy| \leq p \)
$L = \{ \, ww \mid w \in \{0, 1\}^* \, \}$

1.) Assume L is regular and thus has pumping length p

2.) Let the input be 0^p10^p1 ($w = 0^p1$)

3.) $0^p10^p1 = xyz$, so where do we put y?
An FSA that decides...

\[L = \{ 0^i 1^j \mid i > j \} \]
\(L = \{ 0^i1^j \mid i > j \} \)

1.) Assume \(L \) is regular and thus has pumping length \(p \)

2.) Let the input be \(0^{p+1}1^p \)

3.) \(0^{p+1}1^p = xyz \), so where do we put \(y \)?
The Pumping Lemma

If L is a regular language then there is a number p, such that any input string longer than p can be split into sections x, y, and z, such that:

1.) For each $i \geq 0$, $xy^iz \in L$

2.) $|y| > 0$

3.) $|xy| \leq p$
\[L = \{ 0^i 1^j \mid i > j \} \]

1.) Assume \(L \) is regular and thus has pumping length \(p \)

2.) Let the input be \(0^{p+1} 1^p \)

3.) \(0^{p+1} 1^p = xyz \), so where do we put \(y \)?
The Pumping Lemma

If L is a regular language then there is a number p, such that any input string longer than p can be split into sections x, y, and z, such that:

1.) For each $i \geq 0$, $xy^iz \in L$
2.) $|y| > 0$
3.) $|xy| \leq p$
\[L = \{ \, 0^i1^j \mid i > j \, \} \]

1.) Assume \(L \) is regular and thus has pumping length \(p \)

2.) Let the input be \(0^{p+1}1^p \)

3.) \(0^{p+1}1^p = xyz \), so where do we put \(y \)?
L = \{ 0^i 1^j \mid i > j \}

1.) Assume L is regular and thus has pumping length p

2.) Let the input be 0^{p+1}1^p

3.) 0^{p+1}1^p = xz, pump y 0 times?
An FSA that decides...

\[L = \{ w \mid w \text{ is of the form } 0^31^3 \} \]
An FSA that decides...

\[L = \{ w \mid w \text{ is of the form } 0^n 1^m \} \]