Problem 1

The figure below gives a state diagram for Machine R. Write down R formally by specifying $(Q, \Sigma, \delta, q_0, F)$. Give as concise a description as possible of the language G that R recognizes. Then formally prove that R recognizes x if and only if $x \in G$.

R is defined as the five-tuple $(Q, \Sigma, \delta, q_0, F)$ as follows:

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$
- $\delta = \{$
 $(q_0, a) \rightarrow q_1$
 $(q_0, b) \rightarrow q_3$
 $(q_1, a) \rightarrow q_0$
 $(q_1, b) \rightarrow q_2$
 $(q_2, a) \rightarrow q_3$
 $(q_2, b) \rightarrow q_1$
 $(q_3, a) \rightarrow q_2$
 $(q_3, b) \rightarrow q_0$
$\}$
- $q_0 = q_0$
- $F = \{q_0\}$

G is the language R recognizes and it can either be the empty string or it consists of even numbers of a’s and b’s.
Proof.

1. If \(x \in G \), then \(R \) recognizes \(x \):

 • If \(x \) is the empty string, \(R \) accepts \(x \) at \(q_0 \)
 • If \(x \) has an even number of \(a \)'s and \(b \)'s, then \(x \) must be made up of matching \(a \)'s, \(b \)'s, or \((ab \mid ba)\)'s.
 • If \(x \) has only \(aa \)'s or \(bb \)'s, it stays in \(q_0 \)
 • If \(x \) consists only of \((ab \mid ba)(ab \mid ba)\)'s, it will go to \(q_3 \) then return to \(q_0 \)
 • If \(x \) contains \(a \)'s, \(b \)'s and \((ab \mid ba)(ab \mid ba)\)'s, it will still go to \(q_3 \) and return to \(q_0 \).

 Thus it always ends in \(q_0 \) while computing \(x \), so \(R \) accepts \(x \) if \(x \in G \)

2. If \(R \) recognizes \(x \), then \(x \in G \). \(R \) only accepts at \(q_0 \). To end in \(q_0 \), \(x \) can either be the empty string or contains only matching pairs of \(a \)'s, \(b \)'s, or \((ab \mid ba)\)'s. If \(x \) contains an odd number of \(a \)'s and \(b \)'s, it will not end in \(q_0 \), and \(R \) will not accept. If \(R \) accepts \(x \), then \(x \in G \).

\[\square \]

Problem 2

Consider the set of all strings over the 26-letter lowercase English alphabet. Suppose we wish to design a DFA \(J \) that will accept any such finite string, provided it contains the substring “jumbo” somewhere in it. Can you provide the state diagram for \(J \)? Now we instead want to design the DFA \(T \) that will instead accept any string that contains the substring “tufts”. Can you design \(T \)?

![Figure 1: DFA J](image-url)
Figure 2: DFA T