Problem 1
Prove by construction that any number with a repeating decimal is rational (i.e. it can be converted into a fraction).

Problem 2
Prove by contradiction that $\sqrt{2}$ is irrational.
Theorem: Let S be a set of n elements. Then the power set of S has 2^n elements; that is, S has 2^n subsets.

Proof 1:
If S is the empty set, then $n = 0$ and the power set of S is $\{\emptyset\}$.

If S has n elements for $n \geq 1$, pick $a \in X$ and let $T = S - \{a\}$.

All subsets of S have the form V or $V \cup \{a\}$ where $V \subseteq T$. Since T has 2^{n-1} subsets, S has $2^{n-1} + 2^{n-1} = 2^n$ subsets.
Proof 2: By induction on n.

Base Case: If $n = 0$, S has no elements, so $S = \emptyset$. The power set of S is $\{\emptyset\}$, and there is only $1 = 2^0$ element in the power set of S.

Inductive Case: Assume that if T is any set of $n - 1$ elements (for $n \geq 1$), then the power set of T has 2^{n-1} elements. We prove the result for all sets S with n elements.

Since $n \geq 1$, S has at least 1 element. Let a be one such element, and let $T = S - \{a\}$.

Then T has $n - 1$ elements. By the induction hypothesis, T has 2^{n-1} subsets, $A_1, A_2, ..., A_{2^{n-1}}$, and the 2^n subsets of S are $A_1, A_2, ..., A_{2^{n-1}}, A_1 \cup \{a\}, A_2 \cup \{a\}, ..., A_{2^{n-1}} \cup \{a\}$.
Proof 3:
We proceed by induction on n, using the induction hypothesis:

If R is any set of n elements, then the power set of R has 2^n elements.

Base Case: If $n = 0$, $S = \emptyset$.
The power set of S is $\{\emptyset\}$, which has $1 = 2^0$ element.

Inductive Case: We assume the induction hypothesis for sets of $n-1$ elements, and prove it for sets of n elements.

Let S be a set of n elements for $n \geq 1$.
Since $n \geq 1$, S has at least 1 element, pick $a \in S$, and let $T = S - \{a\}$. Then T has $n - 1$ elements.

By the induction hypothesis, T has 2^{n-1} subsets. Call them $A_1, A_2, ..., A_{2^{n-1}}$.

Claim 1: $A_1, A_2, ..., A_{2^{n-1}}, A_1 \cup \{a\}, A_2 \cup \{a\}, ..., A_{2^{n-1}} \cup \{a\}$ cover all subsets of S.

Proof of Claim 1:
If B is any subset of S, then $a \in B$ or $a \notin B$.
If $a \in B$, then $B - \{a\}$ is a subset of T, so $B - \{a\} = A_i$ for some i. Hence $B = A_i \cup \{a\}$ and is listed in the claim.
If $a \notin B$, then B is a subset of T and thus is A_i for some i.

Claim 2: The subsets $A_1, A_2, ..., A_{2^{n-1}}, A_1 \cup \{a\}, A_2 \cup \{a\}, ..., A_{2^{n-1}} \cup \{a\}$ are disjoint.

Proof of Claim 2:
$A_1, A_2, ..., A_{2^{n-1}}$ are disjoint by the induction hypothesis, and none contain a.
$A_1, A_2, ..., A_{2^{n-1}}$ are disjoint from $A_1 \cup \{a\}, A_2 \cup \{a\}, ..., A_{2^{n-1}} \cup \{a\}$, as the former do not contain a and latter do.
$A_1 \cup \{a\}, A_2 \cup \{a\}, ..., A_{2^{n-1}} \cup \{a\}$ are all disjoint, since they differ by elements of $S - \{a\}$.

Claim 3: There are 2^n subsets on the list
$A_1, A_2, ..., A_{2^{n-1}}, A_1 \cup \{a\}, A_2 \cup \{a\}, ..., A_{2^{n-1}} \cup \{a\}$

Proof of Claim 3:
There are 2^{n-1} subsets $A_1, A_2, ..., A_{2^{n-1}}$.
There are 2^{n-1} subsets $A_1 \cup \{a\}, A_2 \cup \{a\}, ..., A_{2^{n-1}} \cup \{a\}$.
Together there are $2^{n-1} + 2^{n-1} = 2^n$ subsets.

Conclusion for the inductive case
The power set of S equals the 2^n distinct subsets
$A_1, A_2, ..., A_{2^{n-1}}, A_1 \cup \{a\}, A_2 \cup \{a\}, ..., A_{2^{n-1}} \cup \{a\}$
Proof 4:
Let D be the set of strings $d_1d_2...d_n$ of length n from the digits 0, 1.

Define $f : D \rightarrow \text{power set of } S$
by $f(d_1d_2...d_n) = \{s_i|d_i = 1\}$.

f provides a 1-1 correspondence between the numbers $0,...,2^n - 1$ and subsets of S, so the result follows.