Problem 1
Prove that the following language is regular by constructing either a DFA or an NFA to recognize it. Then prove the same language is regular by constructing a regular expression for it.

\[L = \{ x \in \{a,b,c\}^* \mid \text{the last 3 characters of } x \text{ are not } a's \} \]

Regular expression: \((a \cup b \cup c)^* \cup (b \cup c)^3 \cup (b \cup c)^2 \cup (b \cup c) \cup \epsilon\)

Problem 2
Show by giving an example that, if \(M \) is an NFA that recognizes language \(C \), swapping the accept and non-accept states in \(M \) does not necessarily yield a new NFA that recognizes the complement of \(C \). Is the class of languages recognized by NFAs closed under complement? Why or why not?

Let NFA \(A \) be

over the alphabet \(\{0,1\} \). \(L(A) = S^* \), so \(A \) accepts '1'.

Let \(B \) be the NFA obtained from \(A \) by switching the accept and reject states:
Since B also accepts all strings of S^*, $L(B) = S^*$ and B accepts ‘1’. Therefore, $L(B) \neq \overline{L(A)}$.

The class of languages recognized by NFA’s is closed under complement.

Proof. Let C be an NFA. Since we can convert C into a DFA, there is a DFA M that recognizes $L(C)$. So, $L(C)$ is regular. By the proof in Problem 2, there is a DFA N that recognizes $\overline{L(C)}$. Since every DFA is an NFA, there is an NFA that recognizes $\overline{L(C)}$. Therefore, the class of languages recognized by NFA’s is closed under complement. \qed