Prove that the language L defined below is undecidable. Is it recognizable, why or why not?

$$L = \{ \langle M, w \rangle \mid M \text{ rejects the input } w \}$$

Solution: We show that if L is decidable, A_{TM} is also decidable.

Suppose, for the sake of contradiction, that L is decidable. Then some machine D_L decides it. We use D_L to construct a decider for A_{TM}.

M_{ATM} on input $\langle M, w \rangle$:
1. Construct $M_{\langle M, w \rangle}$
2. Run D_L on $\langle M_{\langle M, w \rangle}, 1 \rangle$
 - If D_L accepts, ACCEPT
 - If D_L rejects, REJECT

where $M_{\langle M, w \rangle}$ is defined as follows

$M_{\langle M, w \rangle}$ on input x:
1. Run M on w
 - if M accepts, REJECT
 - if M rejects, LOOP

Since M_{ATM} and $M_{\langle M, w \rangle}$ are finite, and each of the instructions is computable, both are valid TM specifications.

Suppose $\langle M, w \rangle \in A_{TM}$. Then M accepts w. So $M_{\langle M, w \rangle}$ rejects on all inputs, specifically on input ‘1’. So D_L accepts $\langle M_{\langle M, w \rangle}, 1 \rangle$ and M_{ATM} accepts.

Suppose $\langle M, w \rangle \notin A_{TM}$. Then M does not accept w, and so either rejects or loops on w. In either case, $M_{\langle M, w \rangle}$ loops on all inputs, specifically on input ‘1’. So D_L rejects $\langle M_{\langle M, w \rangle}, 1 \rangle$ and M_{ATM} rejects.

Therefore, M_{ATM} decides A_{TM}. Since A_{TM} is undecidable, our supposition is false and the result is proved.

We construct the following machine to recognize L.

R_L on $\langle M, w \rangle$:
1. Run M on w
 - If M rejects, ACCEPT
 - If M accepts, REJECT

Since each of R_L’s instructions is a computable procedure, R_L is a TM.

If $\langle M, w \rangle \in L$, then M rejects w, so R_L accepts. If $\langle M, w \rangle \notin L$, then M does not reject w and so either accepts or loops. In either case, R_L does not accept. Therefore, R_L recognizes L and L is recognizable.