Problem 1

Design a Turing machine that can decide the following language (i.e. accept strings that are in the language and reject strings that are not):

\[L_1 = \{ 0^n1^n \mid n > 0 \} \]

The TM \(D_{L_1} \) will function as follows:
1.) If the current symbol is not a 0, REJECT. Otherwise replace the 0 with an X
2.) Move right until you find a 1. If you hit any non-0 symbol along the way, REJECT
3.) Replace the 1 with a Y
4.) Move left until you find an X, then move right once
5.) If you are on a 0, return to Step 1, otherwise move right until you hit any non-Y symbol
6.) If you are on a blank square, ACCEPT, otherwise REJECT

Now consider the language \(L_2 = \{ 0^n1^n0^n \mid n > 0 \} \) and create a decider \(D_{L_2} \) that can decide \(L_2 \).

The TM \(D_{L_2} \) will function as follows:
1.) Modify the instructions for \(D_{L_1} \) by flipping the REJECT and ACCEPT in instruction 6
2.) Run the modified \(D_{L_1} \) on the input string, if it rejects, REJECT
3.) Move left until you find an X, then move right once
4.) Modify the instructions for \(D_{L_1} \) by replacing Y with Z, 0 with Y, and 1 with 0
5.) Run the modified \(D_{L_1} \) on the input string, and do what it does (DWID)
Problem 2

Prove that

\[\text{GT}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that prints a number greater than one half} \} \]

is undecidable.

Proof by reduction: EverPrint_1 to GT_{TM}

Initial Assumption: There exists a TM, D_{GT}(M), that can decide GT.

We will now build a decider for EverPrint_1 that takes input \(\langle M \rangle \) and uses D_{GT}(M) to determine if \(M \) ever prints a 0. This decider, D_{E1}(M), will function as follows:

1.) D_{E1} alters \(M \)'s description to produce \(M' \) by finding \(q_0 \) (the start state) in \(M \)'s description and replacing it with a new state \(q_a \) (or any state name that \(M \) is not already using)

2.) It then adds a new transition to \(M' \)'s description that starts in \(q_0 \) prints a ‘1’ on the first blank square of the tape, moves right, and transitions to \(q_a \) (thus handing over control to the original \(M \))

3.) Run D_{GT} on \(M' \). If D_{GT} accepts \(M' \), then D_{E1} accepts \(M \). If D_{GT} rejects \(M' \), then D_{E1} rejects \(M \).

Case 1: \(\langle M \rangle \in \text{EverPrint}_1 \) In this case \(M \) prints a 1, which means that if \(M' \) initially prints a 1 and then defaults to the execution of \(M \), the end result will be a number that will be greater than one half. Thus D_{GT} will accept causing D_{E1} to accept as well.

Case 2: \(\langle M \rangle \notin \text{EverPrint}_1 \) This means that \(M \) never prints a 1. Thus, after \(M' \) prints it’s initial 1, no further 1’s will be printed. This will cause D_{GT} and thus D_{E1} to reject.
Problem 3

Prove that

\(\text{Pure}_{TM} = \{ \langle M \rangle | M \text{ is a Turing machine that will not print 0's and 1's in combination} \} \)

is undecidable. (So \(\text{Pure}_{TM} \) includes strings of machines that print only 0's, only 1's, and the empty string)

Proof by reduction: EverPrint_0 to Pure_{TM}

Initial Assumption: There exists a TM, \(D_{\text{Pure}} \langle M \rangle \), that can decide \(\text{Pure}_{TM} \).

We will now build a decider for EverPrint_0 that takes input \(\langle M \rangle \) and uses \(D_{\text{Pure}} \langle M \rangle \) to determine if \(M \) ever prints a 0. This decider, \(D_{E0} \langle M \rangle \), will function as follows:

1.) Use \(M \) to construct a new machine \(M' \) that will print a 1 and then simulate \(M \)

2.) Run \(D_{\text{Pure}} \) on \(M' \). If \(D_{\text{Pure}} \) accepts \(M' \), then \(D_{E0} \) rejects \(M \). If \(D_{\text{Pure}} \) rejects \(M' \), then \(D_{E0} \) accepts \(M \)

Case 1: \(\langle M \rangle \in \text{EverPrint}_0 \) In this case \(M \) prints a 0, which means that if \(M' \) initially prints a 1 and then defaults to the execution of \(M \), the end result will be a number that includes both 1’s and 0’s. Thus \(D_{\text{Pure}} \) will reject causing \(D_{E0} \) to accept.

Case 2: \(\langle M \rangle \notin \text{EverPrint}_0 \) This means that \(M \) never prints a 0. Thus, \(M' \) will only print 1’s. Thus \(D_{\text{Pure}} \) will accept causing \(D_{E0} \) to reject.

Obviously an equally valid solution would be to force-print a 0 and then decide EverPrint_1.