COMP170 Spring 2017 Recitation 3

Prove that the language L defined below is undecidable.

$$L = \{\langle M \rangle \mid M \text{ rejects more than 10 inputs} \}$$

Solution: We show that if L is decidable, then A_{TM} is also decidable.

Suppose, for the sake of contradiction, that L is decidable. Then there is some machine M_L that decides it. We use M_L to construct a decider for A_{TM}.

D_{ATM} on $\langle M, w \rangle$:

1. Run M_L on $\langle M'_{(M,w)} \rangle$
 - If M_L accepts, ACCEPT
 - if M_L rejects, REJECT

where $M'_{(M,w)}$ is defined as follows:

$M'_{(M,w)}$ on x:

1. If $x = \langle 1 \rangle$, REJECT
2. If $x = \langle 2 \rangle$, REJECT
3. If $x = \langle 3 \rangle$, REJECT
4. If $x = \langle 4 \rangle$, REJECT
5. If $x = \langle 5 \rangle$, REJECT
6. If $x = \langle 6 \rangle$, REJECT
7. If $x = \langle 7 \rangle$, REJECT
8. If $x = \langle 8 \rangle$, REJECT
9. If $x = \langle 9 \rangle$, REJECT
10. If $x = \langle 10 \rangle$, REJECT
11. Run M on w
 - if M accepts, REJECT
 - if M rejects, LOOP

Since each instruction of D_{ATM} and $M'_{(M,w)}$ is computable, given the existence of M_L, both are valid TM’s.

Suppose $\langle M, w \rangle \in A_{TM}$. Then M accepts on input w. In this case, $M'_{(M,w)}$ rejects on all inputs, and so rejects more than 10 inputs. So M_L accepts on $M'_{(M,w)}$ and D_{ATM} accepts $\langle M, w \rangle$.

1
Suppose $\langle M, w \rangle \not\in A_{TM}$. Then M either rejects or loops on w. In either case, $M'_{\langle M, w \rangle}$ loops on all but 10 inputs. So, $M'_{\langle M, w \rangle}$ does not reject more than 10 inputs. So, M_L rejects on $M'_{\langle M, w \rangle}$ and D_{ATM} rejects $\langle M, w \rangle$.

Therefore, D_{ATM} decides A_{TM}. Since A_{TM} is undecidable, our supposition is false and the result is proved.