Problem 1
Design a Turing Machine that can decide the following language (i.e. accept strings that are in the language and reject strings that are not)

\[L = \{ 0^n1^n \mid n > 0 \} \]

Solution:

Proof Idea: We will construct a decider for the language. The decider will cross off corresponding pairs of 0s and 1s in the proper order, and reject if there's anything left on the tape after

Claim: \(L \) is decidable

Proof by construction.

Construct a decider for \(L \), called \(D_L \) as follows:

\(D_L \) on input \(x \):

i. Check that the input begins with a 0. If not, REJECT

ii. Search left for a 0

• If none found, go to step v.
• Else, cross it off

iii. Search right for a 1

• If none found, REJECT
• Else, cross it off

iv. Go to step ii

v. Check if other unmarked characters are on the tape

• If none, ACCEPT
• Else, REJECT

Case Analysis

Case 1: \(x \in L \), so \(x \) is of the form \(0^n1^n \). So \(D_L \) will cross off 0’s and 1’s in sequence, check for other unmarked characters, find none, and ACCEPT

Case 2: \(x \notin L \), so \(x \) is not of the form \(0^n1^n \). This means that \(x \) is of one of the following forms: it begins with a 1, contains more 0s than 1s, contains more 1s than 0s, or contains 0s following 1s.
For the first case, D_L will reject immediately. For the second case, D_L will reject in step iii. For the third case, D_L will reject in step v. For the fourth case, D_L will reject in step v. In all cases, D_L rejects the input.

Since D_L accepts all inputs in the language and rejects all inputs not in the language, D_L is a decider for L, and thus L is decidable.
Problem 2

Prove that it is not possible to construct a Turing Machine to decide the following language

\[L = \{\langle M \rangle \mid M \text{ is a TM that prints a number greater than one half}\} \]

Solution:

Proof Idea: We will assume that \(L \) is decidable, and then use this assumption to show that an undecidable language can be decided, leading to a contradiction.

Claim: \(L \) is undecidable

Given: EverPrint\(_1\) is undecidable

Proof by contradiction. Assume that \(L \) is decidable, which means that it is possible to construct a decider for it, called \(D_L \). This Turing Machine will accept all inputs in \(L \) and reject otherwise.

We will now use this Turing Machine to construct a decider for EverPrint\(_1\), called \(D_E \), defined as follows

\(D_E \) on input \(M \):

i. Create a new machine \(M' \) which is a copy of \(M \) with an additional state that prints a 1, and then immediately transitions to the original start state of \(M \).

ii. Run \(D_L \) on \(M' \), DWID (do what it does, ie if \(D_L \) accepts: accept, if \(D_L \) rejects: reject)

Case Analysis:

Case 1: \(\langle M \rangle \in \text{EverPrint}_1 \). So, \(M \) prints a 1 at some point in its computation. This means that \(M' \) prints a one followed by another one at some point in its computation. This means that \(M' \in L \), and so \(D_L \) accepts, and thus \(D_E \) accepts.

Case 2: \(\langle M \rangle \notin \text{EverPrint}_1 \). So, \(M \) does not print 1 at some point in its computation. This means that \(M' \) prints a one and then does not a print another one at some point in its computation. This means that \(M' \notin L \), and so \(D_L \) rejects, and thus \(D_E \) rejects.

Since \(D_E \) accepts when \(\langle M \rangle \in \text{EverPrint}_1 \) and rejects when \(\langle M \rangle \notin \text{EverPrint}_1 \), \(D_E \) is a valid decider for \(D_E \). However, we know that EverPrint\(_1\) is undecidable, so our assumption is invalid \(\Box \).
Problem 3

Prove that it is not possible to construct a Turing Machine to decide the following language

\[L = \{ \langle M \rangle \mid M \text{ is a TM that will not print 0’s and 1’s in combination} \} \]

Solution:

Proof Idea: We will assume that \(L \) is decidable, and then use this assumption to show that an undecidable language can be decided, leading to a contradiction.

Claim: \(L \) is undecidable

Given: EverPrint\(_0\) is undecidable

Proof by contradiction. Assume that \(L \) is decidable, which means that it is possible to construct a decider for it, called \(D_L \). This Turing Machine will accept all inputs in \(L \) and reject otherwise.

We will now use this Turing Machine to construct a decider for EverPrint\(_0\), called \(D_E \), defined as follows

\(D_E \) on input \(M \):

i. Create a new machine \(M' \) which is a copy of \(M \) with an additional state that prints a 1, and then immediately transitions to the original start state of \(M \).

ii. Run \(D_L \) on \(M' \)
 - If \(D_L \) accepts, REJECT
 - If \(D_L \) rejects, ACCEPT

Case Analysis:

Case 1: \(\langle M \rangle \in \text{EverPrint}_0 \). So, \(M \) prints a 0 at some point in its computation. This means that \(M' \) prints a one and then prints a zero at some point in its computation. So, \(M' \notin L \) since it prints both a zero and a one. So, \(D_L \) rejects, and and \(D_E \) accepts.

Case 2: \(\langle M \rangle \notin \text{EverPrint}_0 \). So, \(M \) does not print 0 at some point in its computation. This means that \(M' \) prints a one and then does not a print a zero at some point in its computation. This means that \(M' \in L \), and so \(D_L \) accepts, and thus \(D_E \) rejects.

Since \(D_E \) accepts when \(\langle M \rangle \in \text{EverPrint}_0 \) and rejects when \(\langle M \rangle \notin \text{EverPrint}_0 \), \(D_E \) is a valid decider for \(D_E \). However, we know that EverPrint\(_0\) is undecidable, so our assumption is invalid \(\Box \).