Prove that the language \(L \) defined below is co-unrecognizable.

\[
L = \{ \langle M_1, M_2 \rangle \mid |L(M_1)| = |L(M_2)| \}
\]

Idea: We show that both \(A_{TM} \) and \(\overline{A_{TM}} \) many-one reduce to \(L \). \(\overline{A_{TM}} \leq_m L \) shows us that \(L \) is unrecognizable. (If \(L \) were recognizable, then we could recognize \(\overline{A_{TM}} \) via the reduction function and a recognizer for \(L \).) \(A_{TM} \leq_m L \) is equivalent to \(\overline{A_{TM}} \leq_m \overline{L} \), by the definition of ‘\(\leq_m \)’. This shows us that \(\overline{L} \) is also unrecognizable (by similar reasoning). Therefore, both \(L \) and \(\overline{L} \) are unrecognizable, and \(L \) is co-unrecognizable.

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{TM})</td>
<td>(M) accepts on (w)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>(M_1) and (M_2) accept</td>
</tr>
<tr>
<td></td>
<td>same number of inputs</td>
</tr>
</tbody>
</table>

Solution: We show that both \(A_{TM} \) and \(\overline{A_{TM}} \) many-one reduce to \(L \).

- First, we show \(A_{TM} \leq_m L \). Define the reduction function \(f \):

\[
f(\langle M, w \rangle) = \langle M_A, M_B \rangle
\]

where \(M_A \) and \(M_B \) are defined as follows.

\(M_A \) on \(x \):

1. If \(x = ‘0’ \), run \(M \) on \(w \) if \(M \) accepts, ACCEPT

 if \(M \) rejects, loop

2. Else loop

\(M_B \) on \(x \):

1. If \(x = ‘1’ \), ACCEPT

2. Else, REJECT

As \(M_A \) and \(M_B \) are both finite, and as all of their instructions are computable, \(f \) is computable.

Suppose \(\langle M, w \rangle \in A_{TM} \). Then \(M \) accepts \(w \). So \(M_A \) accepts only on input ‘0’, and \(|L(M_A)| = 1 \). Since \(M_B \) accepts only on ‘1’, \(|L(M_B)| = |L(M_A)| = 1 \). So, \(\langle M_A, M_B \rangle \in L \).

Suppose \(\langle M, w \rangle \notin A_{TM} \). Then \(M \) either rejects or loops on \(w \). In either case, \(M_A \) loops on all inputs, so \(|L(M_A)| = 0 \). Since \(M_B \) accepts only on ‘1’, \(|L(M_B)| = 1 \) and \(|L(M_B)| \neq |L(M_A)| \). So \(\langle M_A, M_B \rangle \notin L \).

Therefore, \(f \) is a reduction, and \(A_{TM} \leq_m L \).
• Next, we show $\overline{A_{TM}} \leq_m L$. Define the reduction function g:

$$g(\langle M, w \rangle) = \langle M_C, M_D \rangle$$

where M_C and M_D are defined as follows.

M_C on x:
1. If $x = '0'$, run M on w
 - if M accepts, ACCEPT
 - if M rejects, loop
2. Else loop

M_D on x:
1. REJECT

As M_C and M_D are both finite, and as all of their instructions are computable, f is computable.

Suppose $\langle M, w \rangle \in \overline{A_{TM}}$. Then M either rejects or loops on w. In either case, M_C loops on all inputs, so $|L(M_C)| = 0$. M_D accepts on no inputs, so $|L(M_D)| = |L(M_C)| = 0$. So $\langle M_C, M_D \rangle \in L$.

Suppose $\langle M, w \rangle \notin \overline{A_{TM}}$. Then M accepts on w. So M_C accepts only on input ‘0’ and $|L(M_C)| = 1$. Since M_D accepts on no inputs, $|L(M_D)| = 0$ and $|L(M_D)| \neq |L(M_C)|$. So, $\langle M_C, M_D \rangle \notin L$.

Therefore, g is a reduction and $\overline{A_{TM}} \leq_m L$.

We have shown that $A_{TM} \leq_m L$ and $\overline{A_{TM}} \leq_m L$. Therefore, L is co-unrecognizable. \square