Problem 1

Prove that the following language is undecidable:

\[L = \{ \langle M, w \rangle \mid M \text{ is a TM that rejects input } w \} \]

We will prove that \(L \) is undecidable by reduction to \(A_{TM} \):

Suppose, for the sake of contradiction, that \(L \) is decidable. Then some machine \(D_L \) decides it. We use \(D_L \) to construct a decider for \(A_{TM} \).

\(D_{ATM} \) would proceed as follows on input \(\langle M, w \rangle \):

1. Use \(M \) and \(w \) to construct \(M' \) (see below)
2. Run \(D_L \) on \(\langle M', 1 \rangle \)
 - if \(D_L \) accepts, ACCEPT
 - if \(D_L \) rejects, REJECT

\(M' \) on input \(x \):

1. On input 1, run \(M \) on \(w \)
 - if \(M \) accepts, REJECT
 - if \(M \) rejects, LOOP

Case 1: \(\langle M \rangle \in A_{TM} \) In this case \(M \) accepts \(w \). This means that \(M' \) will reject, causing \(D(\langle M', 1 \rangle) \) to accept, followed by \(D_{ATM} \).

Case 2: \(\langle M \rangle \notin A_{TM} \) In this case \(M \) either rejects or loops on input \(w \). In both of these scenarios, \(M' \) will infinitely loop and never reject. Thus \(D(\langle M', 1 \rangle) \) will reject, followed by \(D_{ATM} \). Since we know that \(A_{TM} \) is undecidable it follows that \(L \) must also be undecidable.
Problem 2

Prove that the following language is unrecognizable:

\[L = \{ \langle M \rangle \mid M \text{ is a TM that accepts any input of the form } 0^n1^n \text{ for } n > 0 \} \]

Intuition: First and foremost, since \(L \) depends on a non-trivial property of the language that a TM decides, we know by Rice’s Theorem that it is undecidable. From there, since a recognizer for \(L, R_L \), would have to verify acceptance on an infinite number of strings, there is no way for \(R_L \) to accept in a finite amount of time. Thus \(L \) is unrecognizable.

Proof: We will prove \(L \) is unrecognizable by showing that \(\overline{A_{TM}} \leq_m L \).

The reducing function works as follows:

On input \(\langle M, w \rangle \) where \(M \) is a TM and \(w \) is a string:

1. Construct a machine \(M' \) on input \(x \) that does the following:
 i. Run \(M \) on \(w \) for \(x \) steps
 If \(M \) hasn’t accepted after \(x \) steps, ACCEPT
 If \(M \) accepts within \(x \) steps, REJECT

2. Output \(\langle M', x \rangle \)

Case 1: \(\langle M, w \rangle \in \overline{A_{TM}} \) In this case \(M \) does not accept \(w \), so \(M' \) will accept on any input \(x \), ensuring that \(M' \in L \).

Case 2: \(\langle M, w \rangle \notin \overline{A_{TM}} \) In this case \(M \) accepts \(w \) at some step \(k \). So \(M' \) rejects any value of \(x \geq k \). Since it will always be possible to construct an input \(x \) of the form \(0^n1^n \) that is greater than \(k \), then \(M' \) will not accept some input of the form \(0^n1^n \). Thus, \(M' \notin L \).

BUT...ALWAYS MAKE SURE YOU’RE USING THE CORRECT COMPLIMENT. Consider the following doppelganger:

\(\overline{L}' = \{ \langle M \rangle \mid M \text{ is a TM that rejects some input of the form } 0^n1^n \text{ for } n > 0 \} \) is recognizable:

We can construct a recognizer for \(\overline{L}' \) by constructing a two-step TM. The first step will generate the next string of the form \(0^n1^n, w_i \), and the second step will simulate \(M \) on \(w_0 \) through \(w_i \) using the dovetailing approach.

A recognizer for \(\overline{L}' \):

1. Create a counter \(i = 0 \)

2. Generate the \(i \)'th string of the language \(0^n1^n \) by appending \(i \) 1’s to \(i \) 0’s

3. Simulate \(M \) on the \(i \)'th string for one step
4. Simulate M on the $i-1$'th string for two steps

5. ...

6. Simulate M on the 2nd string for $i-1$ steps

7. Simulate M on the 1st string for i steps

8. If any of these strings reject, ACCEPT

9. Increment i and return to Step 2

Case 1: $\langle M \rangle \in \bar{L}'$ Our string enumerator will generate every possible string of the form 0^n1^n. If M rejects one of these strings at some point in its computation then M is in \bar{L}' and our recognizer will accept. We are guaranteed to reach the halting point if it exists via dovetailing.

Case 2: $\langle M \rangle \notin \bar{L}'$ If M accepts all of these strings then M is in not in \bar{L}'. In this case, the dovetailing will continue infinitely and our recognizer will never accept.

Therefore \bar{L}' is recognizable. Since it is also undecidable, then L must be unrecognizable. BUT NOT REALLY BECAUSE \bar{L}' IS NOT THE CORRECT COMPLIMENT OF L.