Prove that the language L defined below is undecidable. Is it recognizable, why or why not?

$L = \{\langle M, w \rangle \mid M \text{ rejects the input } w \}$

Solution: We show that if L is decidable, A_{TM} is also decidable.

Suppose L is decidable. Then some machine D_L decides it. Define the function f:

$$f(\langle X, y \rangle) = \langle Z \rangle$$

where X is a machine, y an input, and Z a machine defined as follows:

Z on input $\langle w \rangle$:

1. Run X on y
 - If X accepts, reject
 - If X rejects, loop

Since Z is constructed from the input $\langle X, y \rangle$, and each of Z's instructions is a computable procedure, f is a computable function. We now construct a decider for A_{TM}.

M_{ATM} on input $\langle M, w \rangle$:

1. Construct $M_R = f(\langle M, w \rangle)$
2. Run D_L on $\langle M_R, 1 \rangle$
 - If D_L accepts, accept
 - If D_L rejects, reject

Given the existence of D_L and the computability of f, M_{ATM} is a TM.

Suppose $\langle M, w \rangle \in A_{TM}$. Then M accepts w. So M_R rejects `1`. So D_L accepts $\langle M_R, 1 \rangle$ and M_{ATM} accepts. Suppose $\langle M, w \rangle \notin A_{TM}$. Then M does not accept w, and so either rejects or loops on w. In either case, M_R loops on `1`. So D_L rejects $\langle M_R, 1 \rangle$ and M_{ATM} rejects. Therefore, M_{ATM} decides A_{TM}. Since A_{TM} is undecidable, our supposition is false and the result is proved.

We construct the following machine to recognize L.

R_L on $\langle M, w \rangle$:

1. Run M on w
 - If M rejects, accept
 - If M accepts, reject

Since each of R_L’s instructions is a computable procedure, R_L is a TM.

If $\langle M, w \rangle \in L$, then M rejects w, so R_L accepts. If $\langle M, w \rangle \notin L$, then M does not reject w and so either accepts or loops. In either case, R_L does not accept. Therefore, R_L recognizes L and L is recognizable.