Prove that
\(E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is } \emptyset \} \)
is undecidable.

Proof by reduction: \(A_{TM} \) to \(E_{TM} \)

Initial Assumption: There exists a TM, \(D_E(M) \), that can decide \(E_{TM} \).

We will now build a decider for \(A_{TM} \) that takes input \(\langle M, w \rangle \) and uses \(D_E \) to determine if \(M \) accepts \(w \). This decider, \(D_A \), will function as follows:

1.) Using input \(\langle M, w \rangle \), construct a new machine \(M' \) that works as follows:
 - \(M' \) on input \(x \):
 - If \(x \neq w \), REJECT
 - If \(x = w \), simulate \(M \) on \(w \) and DWID (do what it does)

2.) Run \(D_E \) on input \(\langle M' \rangle \)
 - If \(D_E \) accepts \(M' \), REJECT
 - If \(D_E \) rejects \(M' \), ACCEPT

Case 1: \(\langle M, w \rangle \in A_{TM} \) In this case \(M \) accepts \(w \) and thus \(M' \) will accept when its input is equal to \(w \). Thus \(L(M') \) is not empty, so \(D_E \) rejects \(\langle M' \rangle \) causing \(D_A \) to accept \(\langle M, w \rangle \).

Case 2: \(\langle M, w \rangle \notin A_{TM} \) This means that \(M' \) will reject all possible inputs and \(L(M') = \emptyset \). \(D_E \) will thus accept \(\langle M' \rangle \) causing \(D_A \) to reject \(\langle M, w \rangle \).