EverPrint

Prove

EverPrint₀ = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ prints a 0 at some point} \}

is undecidable.

Proof by reduction: Good⊆₉ to EverPrint₀

Initial Assumption: EverPrint₀ is decidable. Thus there exists a TM, D₉₀⟨M⟩, that can decide EverPrint₀.

We will now build a decider for Good⊆₉ that takes input ⟨M⟩ and determines if M continues to print digits infinitely. This decider, D_{Good}⟨M⟩, will function as follows:

1.) Use decider D₉₀⟨M⟩ to build the decider Dₐ₀⟨M, x⟩ which decides the language:

AnotherPrint₀ = \{ ⟨M, x⟩ \mid M \text{ is a TM and } M \text{ prints another 0 after it has printed it's } x\text{th 0} \}

This is done by converting TM M into a new TM M' in the following way:

1.) Duplicate M’s transition table
2.) For states q₀ through qₙ in M’s table, create corresponding new states qₙ₊₁ through q₂ₙ₊₁
3.) In the duplicated instructions, replace each mention of state qᵢ with it’s corresponding new state qᵢ₊ₙ₊₁
4.) In the original instructions, replace every P₀ (print 0) instruction with an instruction to print a new symbol that is not currently in Γ
5.) Perform the above steps 1-4 x times
6.) Output the resulting machine as M'

The decider for AnotherPrint₀, Dₐ₀⟨M, x⟩, will simply call D₉₀⟨M'⟩

2.) Use decider Dₐ₀⟨M, x⟩ to build machine Calc₀⟨M⟩. The machine Calc₀⟨M⟩ will write out a number N such that the xth digit of N is equal to 1 if Dₐ₀⟨M, x⟩ accepts, and is equal to 0 if Dₐ₀⟨M, x⟩ rejects.

3.) Use machine Calc₀⟨M⟩ and decider D₉₀⟨M⟩ to build the decider D₁₀⟨M⟩ which decides the language:

InfinitePrint₀ = \{ ⟨M⟩ \mid M \text{ is a TM and } M \text{ prints an infinite number of 0’s} \}

The decider D₁₀⟨M⟩ simply calls ¬D₉₀⟨ Calc₀⟨M⟩ ⟩

4.) If we can construct machines D₉₀⟨M⟩, Dₐ₀⟨M, x⟩, Calc₀⟨M⟩, and D₁₀⟨M⟩, then we can construct the corresponding machines D₁¹⟨M⟩, Dₐ₁⟨M, x⟩, Calc₁⟨M⟩, and D₁₁⟨M⟩ which perform the analogous tasks pertaining to the symbol 1 rather than the symbol 0.
5.) Finally, the decider for Good\text{TM} can be constructed as follows:

\[D_{\text{Good}}(M) = D_{I0}(M) \lor D_{I1}(M) \]

Case 1: \(\langle M \rangle \in \text{Good}_{\text{TM}} \) In this case \(M \) will print an infinite stream of digits. This must consist of an infinite number of either 0’s or 1’s, if not both. This means that either \(D_{A0}(M,x) \) or \(D_{A1}(M,x) \) will accept \(M \) for any value of \(x \). Thus the corresponding \(\text{Calc}_0(M) \) or \(\text{Calc}_1(M) \) will consist of an infinite stream of 1’s. Because of this, either \(D_{E0}(\text{Calc}_0(M)^{\langle M \rangle}) \) or \(D_{E0}(\text{Calc}_1(M)^{\langle M \rangle}) \) will reject causing \(D_{I0}(\langle M \rangle) \lor D_{I1}(\langle M \rangle) \) and thus \(D_{\text{Good}}(M) \) to accept.

Case 2: \(\langle M \rangle \notin \text{Good}_{\text{TM}} \) This means that \(M \) stops printing digits altogether at some point. In this case, both \(D_{A0}(M,x) \) and \(D_{A1}(M,x) \) will reject \(M \) at some value of \(x \), causing \(\text{Calc}_0(M) \) and \(\text{Calc}_1(M) \) to begin printing 0’s. Because of this, \(D_{E0}(\text{Calc}_0(M)^{\langle M \rangle}) \) and \(D_{E0}(\text{Calc}_1(M)^{\langle M \rangle}) \) will both accept causing \(D_{I0}(\langle M \rangle) \lor D_{I1}(\langle M \rangle) \) and thus \(D_{\text{Good}}(M) \) to reject.