Prove that
\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]
is undecidable.

Proof by reduction: \(A_{\text{TM}} \) to \(\text{HALT}_{\text{TM}} \)

Initial Assumption: There exists a TM, \(D_{\text{HALT}} \langle M \rangle \), that can decide \(\text{HALT}_{\text{TM}} \).

We will now build a decider for \(A_{\text{TM}} \) that takes input \(\langle M, w \rangle \) and uses \(D_{\text{HALT}} \) to determine if \(M \) accepts \(w \). This decider, \(D_A \), will function as follows:

1.) Run \(D_{\text{HALT}} \) on input \(\langle M, w \rangle \)
2.) If \(D_{\text{HALT}} \) rejects, REJECT
3.) If \(D_{\text{HALT}} \) accepts, then simulate \(M \) on input \(w \)
 - If \(M \) accepts \(w \), ACCEPT
 - If \(M \) rejects \(w \), REJECT

Case 1: \(\langle M, w \rangle \in A_{\text{TM}} \) In this case \(M \) accepts \(w \) and thus halts, so \(D_{\text{HALT}} \) will accept \(\langle M, w \rangle \) and \(D_A \) will accept during the simulation of \(M \) on \(w \).

Case 2: \(\langle M, w \rangle \notin A_{\text{TM}} \) This means that \(M \) either rejects or loops on input \(w \). If \(M \) loops on \(w \) then \(D_{\text{HALT}} \) will reject \(\langle M, w \rangle \) causing \(D_A \) to reject. If \(M \) rejects \(w \) then \(D_{\text{HALT}} \) will accept \(\langle M, w \rangle \) and \(D_A \) will reject during the simulation of \(M \) on \(w \).