COMP170 Halting Problem

The famous Halting problem is defined as the set \(\text{HALT} = \{ \langle M, w \rangle \mid M \text{ halts when started on input } w \} \). Recall that when we say a machine halts on an input, it is the same as saying that the machine accepted or rejected that input. The complement of this set is the set of \(\langle M, w \rangle \) where \(M \) is a machine that does not halt on input \(w \). (Namely, \(M \) loops on \(w \).)

We will prove this set is undecidable by doing a proof by contradiction. The proof by contradiction will assume that \(\text{HALT} \) is decidable. We then use the decider for \(\text{HALT} \) to decide \(A_{TM} \) which we know to be undecidable, thus creating a contradiction.

Theorem \(\text{HALT} \) is undecidable

Proof by contradiction.

We proceed by contradiction, that is, assume that \(\text{HALT} \) is decidable. Since \(\text{HALT} \) is decidable we know there is a machine that decides it, let \(M_{HALT} \) be that machine. We will use this machine to create a decider for \(A_{TM}, M_{ATM} \).

\(M_{ATM} \) on input \(\langle M, w \rangle \)

1. Run \(M_{HALT} \) on \(\langle N_{\langle M,w \rangle}, 5 \rangle \) /* \(N_{\langle M,w \rangle} \) is defined below*/
 1a. If \(M_{HALT} \) accepts \(\langle N_{\langle M,w \rangle}, 5 \rangle \), ACCEPT.
 1b. If \(M_{HALT} \) rejects \(\langle N_{\langle M,w \rangle}, 5 \rangle \), REJECT.

Now consider the machine \(N_{\langle M,w \rangle} \) defined below. Note that it depends on the \(\langle M, w \rangle \) given as input. This is fine, we just need to know that it is a valid Turing machine. You can imagine it is predefined ahead for all possible \(M \) and \(w \).

\(N_{\langle M,w \rangle} \) on input \(x \)

1. if \(x == 5 \)
 1a. Run \(M \) on \(w \)
 i. If \(M \) accepts \(w \), ACCEPT
 ii. If \(M \) rejects \(w \), loop
 2. else loop

Claim, \(M_{ATM} \) decides \(A_{TM} \).

We can see that \(M_{ATM} \) is a valid Turing machine if \(M_{HALT} \) is a valid Turing machine, as it has a finite number states and only makes calls to \(M_{HALT} \). Since we have also assumed that \(M_{HALT} \) is a decider, then we know \(M_{ATM} \) halts on all inputs. Now we need only show that it is a decider for \(A_{TM} \). There are two cases two check, \(\langle M, w \rangle \in A_{TM} \) and \(\langle M, w \rangle \notin A_{TM} \).

Case \(\langle M, w \rangle \in A_{TM} \). Since \(\langle M, w \rangle \in A_{TM} \) we know that \(M \) accepts \(w \), then we know that the corresponding \(N_{\langle M,w \rangle} \) will accept 5, by definition. Further, we know since it accepted 5, it halted on 5 so that \(M_{HALT} \) accepted \(\langle N_{\langle M,w \rangle}, 5 \rangle \). This implies that \(M_{ATM} \) accepted, so it decided this case correctly.

1
Case $(M, w) \notin A_{TM}$. Since $(M, w) \notin A_{TM}$ there are two sub-cases to check, M rejects w, and M loops on w. Consider the case when M rejects w. Then by definition, $N_{(M, w)}$ will loop on 5, and since M_{HALT} is a decider it will reject $(N_{(M, w)}, 5)$ and similarly M_{ATM} will reject. Therefore M_{ATM} decides this sub-case correctly. Now consider the sub-case when M loops on w. Then when $N_{(M, w)}$ is run on input 5 it simulates M on w and will loop during the simulation. This will in turn cause M_{HALT} to reject $(N_{(M, w)}, 5)$, and M_{ATM} will reject this (M, w), correctly deciding this sub-case.

Since M_{ATM} halts on every input and correctly decides all cases, it decides A_{TM}. This is a contradiction as no such machine can exist. Since the only assumption made in the creation of M_{ATM} was that machine M_{HALT} decides $HALT$. It must be that no such machine exits. Thereby showing that $HALT$ is undecidable.