Degree Equal Connected Sets:

Given a graph G with vertex set V, edge set E and a positive integer d is there a subset of edges $E' \subseteq E$ where the subgraph G' with same vertex set V and new edge set E' is connected and every vertex has degree d (Recall the degree of a vertex is the number of neighbors.)

More formally:

$DECS = \{\langle G, d \rangle \mid |V| = n, \exists E' \subseteq E, V' = V, G' = (V', E') \text{ is connected and } \forall v \in V', \deg(v) = d.\}$

Prove that $DECS$ is NP-complete. To show hardness consider a reduction from Hamiltonian Cycle.

Hint: Before attempting the reduction draw some examples of graphs and their Hamiltonian cycles.

Solution:

Claim that $DECS$ is in NP. Proof by construction. Consider nondeterministic machine N defined as follows:

1. Nondeterministically choose a subset of edges from G, let the subset be E'. Let G' be the graph defined by V, the vertex set from G, and the new subset of edges E'.
2. Perform a depth first search or a breadth first search to determine if G' is connected. If not REJECT, if yes continue.
3. For every vertex v in G':
 3a. Check that the degree of v is d. If not REJECT, if yes continue.
4. ACCEPT

N runs in polynomial time. The first step, the nondeterministic choice, costs the time to write down the subset of edges, if we say $|V| = n$, then $O(n^2)$. The second step is a graph traversal which is bounded by the number of edges in the graph, so it takes $O(n^2)$. The loop in step 3 is over all vertices and will execute n times. Within the loop the cost is $n – 1$ the maximum possible degree. So the overall cost of the loop is $O(n^2)$. This means the overall runtime of N is $O(n^2)$.

To show that N decides $DECS$ we need to show that if $\langle G, d \rangle \in DECS$ then N accepts and we need to show that if N accepts then $\langle G, d \rangle \in DECS$.

Assume that $\langle G, d \rangle \in DECS$. Then we know that there is at least one $E' \subseteq E$, where the graph G' defined over the same vertex set, V, and the new subset E' is connected and every vertex in G' has degree d. We know that in step 1 N will choose one such E' on a brach of computation. For that branch, the corresponding G' is connected and the graph traversal will succeed in testing that it is connected and continue to step 3. We also know that every vertex in G' has degree d and the loop will verify this and complete. In step 4, this G' will be accepted.

Assume that N accepts $\langle G, d \rangle$. Then we know we have at least one accepting path in N. Let E' be the chosen set of edges on an accepting path. Further let G' be the graph defined by V and E' on that path. In step 2, N verifies that G' is connected. In the loop of step 3, N checks that every vertex has degree d. This implies that $\langle G, d \rangle$ is in $DECS$.

1
Claim \textsc{HAMCYCLE} $\leq^p \textsc{DECS}$

Consider the function f defined as follows:

f on input G:

Output $\langle G, 2 \rangle$

f takes polynomial time as the only step is to output the graph and the number 2, which takes $O(n^2)$ time to write out all possible vertices and edges. Note that it is linear in the size of the input, but we are setting $n = |V|$.

If G is in \textsc{HAMCYCLE} then $\langle G, 2 \rangle$ is in \textsc{DECS}.

Let v_1, v_2, \ldots, v_n be the Hamiltonian cycle. Consider the subset of edges in G which are in the cycle, namely, $\langle v_1, v_2 \rangle, \langle v_2, v_3 \rangle, \ldots, \langle v_i, v_{i+1} \rangle, \ldots, \langle v_{n-1}, v_n \rangle, \langle v_n, v_1 \rangle$. Let G' be the graph constructed of the vertex set, V, from G and this edge set from the Hamiltonian cycle. Notice that G' is connected. This is true as the edge set is a cycle, a simple path connecting all vertices. Further, notice that every vertex in G' has degree 2, one edge connecting to the previous node in the cycle and one to the next node in the cycle. This implies that $\langle G, 2 \rangle$ is in \textsc{DECS}.

If $\langle G, 2 \rangle$ is in \textsc{DECS} then G is in \textsc{HAMCYCLE}.

Since $\langle G, 2 \rangle$ is in \textsc{DECS} we know there is a subset of edges E' from G where the graph, G', constructed from the vertices of G and this edge set E' is connected and every vertex in G' has degree 2. If we consider the connected graph in which every vertex has degree 2, we have a cycle. Since this graph contains every vertex from G, then G has a cycle that visits every node exactly once, namely G is in \textsc{HAMCYCLE}.