
COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 1/4109	– Ray	Casting

Ray Casting

COMP 175: Computer Graphics
April 26, 2018



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 2/4109	– Ray	Casting

} Assignment	4	posted
} Picking	new	partners	today	for	rest	of	the	assignments
} Demo	in	the	works

} Mac	demo	may	require	a	new	dylib I	will	provide

} Lab07	posted
} Physics	Equation	Cheat	Sheet	posted
} Any	Questions	about	the	schedule?

Admin



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 3/4109	– Ray	Casting

} So	far,	you	have	learned	to	build	a	“passive”	
renderer
} Input:	vertices	and	geometric	shapes
} Output:	an	image

} What	happens	when	a	user	wants	to	manipulate	
the	objects	in	the	scene?
} Say,	a	user	clicks	on	an	object	on	screen,	how	do	you	
know:
} A.	which	object	the	user	clicked	on?
} B.	where	on	the	object	the	user	clicked	on?

Motivation



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 4/4109	– Ray	Casting

} Albrecht	Dürer,	1525
} http://www.youtube.com/watch?v=8s1LzIrWbE8

} Durer:	record	string	intersection	from	center	of	projection	(eye)	to	the	
object	as	points	on	a	2D	plane.

} Points	created	are	perspective	projection	of	3D	object	onto	2D	plane

Origin of Ray Casting / Ray Tracing



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 5/4109	– Ray	Casting

} A	ray	tracer	is	a	mapping	of	rays	from	the	
camera	(eye)	through	each	pixel	to	the	
objects	in	the	scene

} Each	pixel	returns	either:
} Ray	intersection	with	the	nearest	object	in	the	
scene

} No	intersection

} Unlike	Durer’s	method,	a	typical	ray	
tracer	also	takes	into	account	of	lighting	
(and	material)	information

} To	render	a	scene,	a	ray	is	cast	from	each	
pixel,	and	the	returned	value	(color)	is	
recorded.

What is a Ray Tracer?



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 6/4109	– Ray	Casting

} There	are	three	parts	to	a	ray	tracer:
1. Generating	rays

} Shoot	a	ray	from	the	eye	through	a	sample	point	on	the	film	plane	
that	corresponds	to	a	pixel

} Repeat	the	process	for	each	pixel
2. Ray-Object	intersection

} For	each	object	in	the	scene,	compute	their	intersection	point	(if	one	
exists)

} Record	the	closest	intersection	point	to	the	eye
3. Calculate	lighting	(i.e.	color)

} Use	illumination	model	to	determine	direct	contribution	from	light	
sources

} (For	recursive	ray	tracer),	recursively	generate	secondary	rays	that	
might	contribute	to	the	color	of	the	pixel	(e.g.,	reflective	surfaces	or	
mirrors	need	to	reflect	other	objects	in	the	scene)

Ray Tracing Fundamentals



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 7/4109	– Ray	Casting

} How	is	ray	tracing	different	from	scan	conversion?
} Shapes	and	SceneView both	use	scan	conversion	to	render	
objects	in	a	scene	and	follow	the	pseudocode:

for each object in the scene

for each triangle in the object

pass vertex geometry and colors to OpenGL

tell OpenGL to render/map the triangle onto screen

Ray Tracing vs. Scan Conversion



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 8/4109	– Ray	Casting

} Ray	tracing	uses	the	following	pseudocode:
for each sample (pixel) on the film plane

1. determine the closest object in the scene hit 
by a ray through that pixel

2. set the color based on the calculation of the 
illumination model for the intersected object

} Note	the	distinctions:
} Ray	tracing	iterates	over	PIXELS
} Scan	conversion	iterates	over	VERTICES

Ray Tracing vs. Scan Conversion



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 9/4109	– Ray	Casting

} Ray	Origin
} Let’s	look	at	the	geometry	in	
the	world	space	coordinate

} We’ll	start	the	ray	from	the	
camera’s	position	(eye	
point).		Call	that	point	P

Step 1: Generating a Ray (Solution 1 – World Coord)

} Shoot	a	ray	from	P	towards	a	point	on	the	film	plane	
(which	can	be	thought	of	as	the	UV	plane	in	the	camera’s	
UVN	(or	UVW)	space).		Call	this	directional	vector	d.

} In	parametric	form,	any	point	along	the	ray	can	be	
described	using	this	form:	P	+	td,	where:
} P is	the	ray’s	origin	(eye	point)
} d is	the	unit	vector	in	the	direction	of	the	ray
} t is	a	non-negative	real	value



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 10/4109	– Ray	Casting

Q

} We	know	the	value	of	the	eye	
point,	but	what	about	the	look	
direction?

} Consider	the	simple	case:
} Finding	the	look	direction	means	
finding	the	“look	at”	point,	call	it	Q,	
then	the	ray	direction	is	just:	
d	=	normalize(Q-P)

} Recall	that	P	is	the	eye	point
} If	Q	is	right	on	the	look	vector,	
that’s	pretty	straight	forward:
Q	=	P	+	nearPlane *	lookV

Step 1: Generating a Ray (Solution 1 – World Coord)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 11/4109	– Ray	Casting

Q

} Now	that	we	have	the	point	
Q,	can	we	find	this	other	
point	S?
} S	=	Q	+	au +	bv

} How	do	we	find	a	and	b?

Step 1: Generating a Ray (Solution 1 – World Coord)

S

S
Q

(a,	b)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 12/4109	– Ray	Casting

} First,	we	need	to	find	the	width	(W)	and	height	(H)	
of	the	film	plane	in	the	world	coordinates:
} If	we	place	the	film	plane	on	the	near	clipping	plane,	let’s	
say	that	the	plane	extends	from	–W	to	W	in	the	u	
direction,	and	–H	to	H	in	the	v	direction

} For	a	view	angle	of	𝜃,	and	the	aspect	ratio	of	(w/h)
} 𝐻	 = 	𝑁	tan	(𝜃/2)	and	𝑊	 = 	𝐻	 ∗ 	(𝑤/ℎ)

Step 1: Generating a Ray (Solution 1 – World Coord)

S
Q

(a,	b)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 13/4109	– Ray	Casting

} Given	H	and	W,	finding	a	and	b	is	pretty	easy:

} 𝑎	 = 	−𝑊	 + 2𝑊 ∗ 4
56789

, 		𝑓𝑜𝑟	𝑐	 = 	0, 1, … , 𝑛𝐶𝑜𝑙𝑠	– 	1

} 𝑏	 = 	−𝐻	 + 2𝐻 ∗ H
5I7J9

, 		𝑓𝑜𝑟	𝑟	 = 	0, 1, … , 𝑛𝑅𝑜𝑤𝑠	– 	1	

Step 1: Generating a Ray (Solution 1 – World Coord)

S
Q

(a,	b)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 14/4109	– Ray	Casting

} The	origin	of	a	ray	is	at	the	
eye	point	P

} The	direction	of	the	ray	is	S –
P,	where	S	is	a	3D	point	on	the	
film	plane.

} S	has	the	form	of	Q	+	au +	bv
} Q	is	P	+	near*LookV
} 𝑎	 = 	−𝑊	 + 2𝑊 4

56789

} 𝑏	 = 	−𝐻	 + 2𝐻 H
5I7J9

Step 1: Generating a Ray (Solution 1 – World Coord)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 15/4109	– Ray	Casting

Questions?



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 16/4109	– Ray	Casting

} The	second	approach	to	computing	a	ray	is	to	think	of	the	ray	in	the	
camera’s	own	coordinate	system.

} In	this	system,	the	camera’s	position	is	at	the	origin	(0,	0,	0),	and	the	
look	vector	is	always	–z	(0,	0,	-1)

} The	four	corners	of	the	far	plane	have	the	coordinates	of	(-1,	1,	-1),	(1,	
1,	-1),	(-1,	-1,	-1),	(1,	-1,	-1)

Step 1: Generating a Ray (Solution 2 – Camera Coord)

canonical	view	volume
Any	plane	z	=	k,	-1<=	k <	0	can	be	the	film	plane



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 17/4109	– Ray	Casting

} In	this	coordinate	system,	finding	the	lookAt point	is	pretty	
easy.		The	x	value	ranges	from	[-1,	1],	and	the	y	value	ranges	
from	[-1,	1].		The	z	value	is	always	-1.

} So	the	lookAt point	will	have	the	form	of	(-1+2/nCols,	-
1+2/nRows,	-1)

} Once	we	have	the	lookAt point,	we	need	to	apply	the	
inverse	of	the	camera’s	normalization	matrices.
} Recall	that	in	building	a	synthetic	camera,	we	map	the	camera	in	
world	coordinate	into	the	camera’s	coordinate	space.		The	steps	are:
} Translate,	Rotate,	Scale,	Unhinge	(𝑀MM𝑆OPQ𝑅RSJTOPQ𝑇RSJ)

} Here,	we	do	not	need	to	do	the	Unhinge	step,	but	we	do	need	to	
invert	the	first	three	parts:
} UnScale,	UnRotate,	UnTranslate (𝑇RSJVW 𝑅RSJTOPQVW 𝑆OPQVW )

Step 1: Generating a Ray (Solution 2 – Camera Coord)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 18/4109	– Ray	Casting

} Remember	that	we	need	to	apply	this	inverse	
matrix	to	the	two	points	that	make	up	the	ray
} The	eye	point	P
} The	point	on	the	far	plane

} Don’t	forget	to	normalize	the	resulting	ray	vector

Step 1: Generating a Ray (Solution 2 – Camera Coord)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 19/4109	– Ray	Casting

} In	Summary:

} Start	the	ray	at	center	of	projection	(“eye	point”)

} Map	2D	integer	screen-space	point	(x,	y)	onto	3D	film	plane
} scale	x,	y	to	fit	between	-1	and	1
} set	z	to	-1	so	points	lie	on	the	far	clip	plane	
} film	plane	=	far	clip	plane	when	z	=	-1

} Transform	3D	film	plane	point	(mapped	pixel)	to	an	untransformed	
world-space	point
} need	to	undo	normalizing	transformation

} Construct	the	direction	vector
} point	minus	point	is	a	vector
} direction	=	(world-space	point	(mapped	pixel))	– (eye	point	(in	world	space))

Step 1: Generating a Ray (Solution 2 – Camera Coord)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 20/4109	– Ray	Casting

Questions?



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 21/4109	– Ray	Casting

} How	do	we	determine	if	(and	where)	two	
mathematical	objects	intersect?

} For	example,	how	do	we	know	where	two	lines	
intersect?
} y =	3x	+	1
} y =	2x	+	4

} In	concept,	the	two	objects	intersect	where	their	values	
are	the	same.	In	this	case,	we	can	say
} 3x	+	1	=	2x	+4
} x	=	3
} put	back	into	either	equation,	we	get	y	=	10
} So	the	two	lines	intersect	at	(3,	10)

Ray-Object Intersections



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 22/4109	– Ray	Casting

} Intersection	between	a	ray	and	a	3d	geometric	
object	is	the	same.
} We	know	the	mathematical	definitions	for	sphere,	
cylinder,	cube,	and	cone.

} We	also	know	the	mathematical	definition	for	a	ray
} This	is	from	your	Assignment	1	-- more	on	this	later

} However,	in	our	scene	graph,	our	3d	object	can	be:	
translated,	rotated,	and	scaled…
} It’s	a	pain	when	the	mathematical	definition	of	the	object	
is	different	for	every	object	in	the	scene!

Ray-Object Intersection



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 23/4109	– Ray	Casting

} For	example,	in	the	original	problem	with	2	lines,	we	might	be	able	to	
“fix”	one	of	the	equation	so	that	it’s	always	easily	solvable.	For	instance,	
let’s	say	that	we	want	one	of	the	equation	to	always	be:
} y	=	0

} Then,	in	our	original	equations
} y	=	3x	+	1
} y	=	2x	+	4

} We	would	then:
} Subtract	1	from	both	equations	(shift	both	lines	down	by	1)
} For	both	equations,	divide	both	sides	by	3x
} Subtract	1	from	both	equations

} This	results	in:
} y/x	=	0
} y/x	=	-1/3	+ 1/x

} Now	we	can	solve	for	x

“Fixing the Frame of Reference”



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 24/4109	– Ray	Casting

} Our	trick	is	basically	the	same	– we	want	to	solve	
intersection	for	each	“Shape”	once,	and	we	do	this	
in	the	Object	Coordinate	Space	where:
} The	object	is	always	centered	at	(0,	0,	0)
} The	object	is	not	rotated
} The	object	is	bounded	within	-0.5	to	0.5	in	x,	y,	and	z	
directions

} This	means	that	we	need	to	transform	the	ray	from	
World	Coordinate	Space	into	Object	Coordinate	
Space

In 3D



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 25/4109	– Ray	Casting

} In	Assignment	3	(SceneView),	after	“flattening”	the	
scene	graph	hierarchy,	each	object	is	associated	
with	a	single	4x4	transform	matrix,	M
} This	matrix	is	an	Object	to	World	transform	(transforms	
from	the	object	space	to	the	world	space)

} If	this	is	confusing,	think	about	how	the	point	(0,	0,	0)	
gets	transformed	after	multiplying	by	this	matrix…	This	
implies	that	the	origin	in	object	coordinate	space	gets	
mapped	to	the	a	point	in	the	world	coordinate

} Since	our	ray	is	in	the	World	Coordinate	Space,	we	
need	to	invert	M such	that	the	matrix	goes	from	
World	to	Object	coordinates

Example



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 26/4109	– Ray	Casting

} Recall	that	our	ray	is	defined	by	two	components:
} The	eye	point	P
} The	direction	𝑑Y

} This	means	that	converting	the	Ray	from	World	
Coordinate	into	Object	Coordinate	requires	two	
transforms:
} 𝑃7[\]4^ = 𝑀VW ∗ 𝑃J7H8_
} 𝑑Y7[\]4^ = 𝑀VW ∗ 𝑑YJ7H8_

Ray from World to Object Coordinate



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 27/4109	– Ray	Casting

Questions?



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 28/4109	– Ray	Casting

} Now	that	we	have	the	Ray	in	the	Object	Coordinate:
} 𝑃]P]7[\]4^ + 𝑡𝑑

Y7[\]4^
} Given	a	t	value,	this	equation	describes	a	3D	point	in	the	object	
coordinate	space:
} 𝑃7[\]4^ = 𝑃]P]7[\]4^ + 𝑡𝑑

Y7[\]4^

} Then	we	can	describe	our	3d	geometric	objects	in	the	
same	way	that	we	did	in	Assignment	1,	in	that	our	
equation	can	assume:
} Object	is	at	0,	0,	0	(no	translation)
} Object	is	not	deformed	in	some	way	(no	scaling)
} Object	is	axis-aligned	(no	rotation.	Think	cube)

Intersection in Object Space



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 29/4109	– Ray	Casting

} The	equation	for	a	3D	sphere	is:
} (𝑥 − 𝑥4)T+(𝑦 − 𝑦4)T+(𝑧 − 𝑧4)T= 𝑟T
} Where	r	is	the	radius	of	the	sphere
} 𝑥4 ,	𝑦4 ,	and	𝑧4 represent	the	coordinate	of	the	center	of	the	
sphere

} Using	vector	notation,	we	can	rewrite	this	as:
} 𝑃9 − 𝑃4 T = 𝑟T
} Where	𝑃9 is	any	given	point	on	the	surface	of	the	sphere
} 𝑃4 is	the	origin	of	the	sphere
} The	double	bar	means	to	take	the	length	of	the	vector

Example: Sphere



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 30/4109	– Ray	Casting

} Recall	that	to	find	intersection	between	two	mathematical	
objects,	we	just	have	to	set	the	two	equations	to	be	equal…

} Our	two	equations	are:	
} Ray:	𝑃9 = 𝑃]P] + 𝑡𝑑Y (note,	this	is	in	object	space)
} Sphere: 𝑃9 − 𝑃4 T = 𝑟T

} Substitute	𝑃9 into	the	Sphere	equation:
} 𝑃]P] + 𝑡𝑑Y − 𝑃4

T
= 𝑟T

} We	can	drop	𝑃4 because	it	is	(0,	0,	0)	in	the	object	space
} Recall	that	the	(square	of	the)	length	of	a	vector	is	the	same	
as	the	dot	product	of	the	vector	onto	itself
} If	this	is	unclear,	think	about	what	the	dot	product	is

} Now	we	can	rewrite	the	equation	as
} 𝑃]P] + 𝑡𝑑Y d 𝑃]P] + 𝑡𝑑Y = 𝑟T

Ray – Sphere Intersection



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 31/4109	– Ray	Casting

} From	the		last	slide:	
} 𝑃]P] + 𝑡𝑑Y d 𝑃]P] + 𝑡𝑑Y = 𝑟T

} Multiply	it	out,	we	get
} 𝑃]P] d 𝑃]P] + 2 𝑃]P] d 𝑡𝑑Y + 𝑡T 𝑑Y d 𝑑Y − 𝑟T = 0,	or
} 𝑡T 𝑑Y d 𝑑Y + 𝑡 ∗ 2 𝑃]P] d 𝑑Y + 𝑃]P] d 𝑃]P] − 𝑟T = 0

} This	should	look	familiar	as	this	is	a	simple	quadratic	
equation	 𝐴𝑥T + 𝐵𝑥 + 𝐶 = 0 .	In	our	case:
} 𝐴 = 𝑑Y d 𝑑Y

} 𝐵 = 2 𝑃]P] d 𝑑Y

} 𝐶 = 𝑃]P] d 𝑃]P] − 𝑟T

} Our	goal	is	to	solve	for	t:
} 𝑡 = Vg± giVjk6�

Tk

Ray – Sphere Intersection



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 32/4109	– Ray	Casting

} There	are	a	few	things	about	this	equation	that	should	
be	familiar	to	you:
} The	discriminate	(𝐵T − 4𝐴𝐶) should	be	positive,	otherwise	
there	is	no	real	solution

} There	are	two	solutions	(because	of	the	+	and	-)

} Both	properties	are	meaningful	in	our	solution:
} If	the	discriminate	is	negative,	there	is	no	solution

} In	this	case,	the	ray	misses	the	sphere	– there	is	no	intersection
} If	the	discriminate	is	0,	we	have	one	solution

} In	this	case,	the	ray	“grazes”	the	sphere	(and	ray	becomes	a	tangent	to	
the	sphere)

} If	the	discriminate	is	positive,	we	have	two	solutions
} The	two	solutions	represent	the	two	points	where	the	Ray	intersect	a	
Sphere	(i.e.,	the	front	and	back	side	of	the	sphere)

Algebra Reminder



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 33/4109	– Ray	Casting

} Assuming	that	the	discriminate	is	positive	(that	is,	you	have	
two	solutions	t0	and	t1)

} You	should	return	the	min(t0,	t1)	because	the	smaller	value	
represents	the	intersection	point	that	is	closer	to	the	eye	
point

} Plug	the	smaller	t	value	back	into	the	Ray	equation:
} 𝑃9 = 𝑃]P] + 𝑡𝑑Y
} And	you	have	your	intersection	point	(in	object	coordinate	space)
} To	find	this	point	in	the	World	Coordinate	Space,	multiple	Ps	by	the	
object’s	transform	matrix	M.
} 𝑃9J7H8_ = 𝑀 ∗ 𝑃97[\]^

Finding the Intersection Point



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 34/4109	– Ray	Casting

} Cube:
} Perform	Ray	– Plane	intersection	6	times,	check	to	make	sure	that	the	intersection	point	

occurs	within	the	bounds	(-0.5,	0.5)
} Equation	for	a	Plane	is:	 𝑃 − 𝑃7Hnon5 d 𝑛p = 0

} Where	P	is	any	point	on	the	plane,	𝑃7Hnon5 is	the	center	point	of	the	plane,	and	n	is	the	normal

} Sphere:
} Discussed	before

} Cylinder:
} Perform	Ray	– Plane	intersection	for	the	two	caps,	check	to	make	sure	the	intersection	point	

occurs	within	the	circle
} Perform	Ray	– Cylinder	intersection
} Equation	for	an	(infinite)	cylinder	is:	𝑥T + 𝑧T = 𝑟T.		Check	for	bounds	such	that	y	is	between	

(-0.5,	0.5)
} Cone

} Perform	the	cap	(same	as	cylinder)
} Perform	Ray—Cone	intersection	
} Equation	for	an	(infinite)	cone	is:	𝑥T + 𝑧T = 𝑎𝑝𝑒𝑥 − 𝑦 T ∗ 𝑟T/ℎ𝑒𝑖𝑔ℎ𝑡T.		Check	for	bounds	

such	that	y	is	between	(-0.5,	0.5)
} Note	that	in	our	case,	height	of	the	cone	is	equal	to	1,	apex	is	the	position	of	the	pin	point	of	the	cone	

(0,	apex,	0),	which	is	0.5

For All Other Geometric Shapes



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 35/4109	– Ray	Casting

P = eyePoint

for each pixel of image

Compute the ray, d

for each object
1) convert P and d into object space
2) intersect ray P+td with object and find closest 

intersection point
3) convert the point to world coordinate and determine its 

distance to eye point (in world coordinate)

Select the nearest object

Compute normal at that point in object coordinate
Transform normal to world space

Use world space normal for lighting computations

Summary



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 36/4109	– Ray	Casting

} An	important	point	about	transforming	Ray	from	World	space	to	
Object	space:

} Normalize	the	Ray	after	it’s	created	in	World	space.
} However,	do	NOT	normalize	Ray	after	the	transform	into	Object	
Space!!

} Reason:
} If	you	normalize,	then	the	value	t	you	find	will	be	in	the	object	space.	
When	there	are	many	objects,	it’s	hard	to	figure	out	how	to	compare	all	
the	different	t	values	across	different	object	spaces

} If	you	do	not	normalize,	then	the	value	t	will	apply	in	the	world	space.	
That	means	that	you	can	compare	the	t	values	derived	from	the	different	
objects	in	the	same	coordinate.

} Think	about	it	a	little	bit…	This	is	the	only	time	in	this	class	
where	you	should	not	normalize	a	vector.

Note about Ray



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 37/4109	– Ray	Casting

} If	you	would	like	to	render	a	mesh	(made	up	of	
triangles),	you	would	need	to	do	Ray-Triangle	
intersection

} Ray	– Triangle	intersection	is	basically	the	same	as	
Ray	– Plane	intersection,	except	that	you	need	to	
check	if	the	intersection	point	is	within	the	triangle

Intersection with a Triangle



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 38/4109	– Ray	Casting

} Consider	the	Cross	Product	Between	
(B-A)	and	(Q-A)
} If	Q	is	inside	vs.	outside	of	the	triangle,	the	
two	cross	products	will	have	different	signs

} More	formally,	we	can	compare	this	
cross	product	with	the	normal	of	this	
triangle,	n,	such	that	if	Q	is	inside	of	the	
triangle,	then:
} 𝐵 − 𝐴 × 𝑄 − 𝐴 d 𝑛 ≥ 0

Inside / Outside Test



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 39/4109	– Ray	Casting

} To	make	sure	that	this	is	true	for	all	3	sides,	we	
need	to	test	all	three	conditions:
} 𝐵 − 𝐴 × 𝑄 − 𝐴 d 𝑛 ≥ 0
} 𝐶 − 𝐵 × 𝑄 − 𝐵 d 𝑛 ≥ 0
} 𝐴 − 𝐶 × 𝑄 − 𝐶 d 𝑛 ≥ 0

} If	all	three	are	satisfied,	we	know	that	Q	is	inside	
the	triangle	ABC

Inside Outside Test



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 40/4109	– Ray	Casting

} The	test	gave	us	an	inside	/	outside	test,	but	it	doesn’t	
say	exactly	where	the	intersection	occurs.	To	
determine	the	intersection	point,	we	need	

} For	a	point	Q	inside	a	triangle	(ABC),	the	point	Q	can	be	
described	as:
} 𝑄 = 𝛼 ∗ 𝐴 + 𝛽 ∗ 𝐵 + 𝜃 ∗ 𝐶

} If	Q	is	inside	the	triangle,	then:
} 𝛼 ≥ 0
} 𝛽 ≥ 0
} 𝜃 ≥ 0
} 𝜃 = 1 − 𝛼 − 𝛽	

Barycentric Coordinate



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 41/4109	– Ray	Casting

} It	turns	out	that	one	way	to	compute	the	
barycentric coordinate	of	a	point	is	to	compare	the	
sizes	of	the	triangles.
} 𝑄 = 𝛼 ∗ 𝐴 + 𝛽 ∗ 𝐵 + 𝜃 ∗ 𝐶

} In	particular:
} 𝛼 = kH]z({g6)

kH]z(kg6)

} 𝛽 = kH]z(k{6)
kH]z(kg6)

} 𝜃 = kH]z(kg{)
kH]z(kg6)

Computing the Barycentric Coordinate



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 42/4109	– Ray	Casting

} Recall	that	the	area	of	a	
parallelogram	made	up	of	two	
vectors	is	the	same	as	the	length	
of	their	cross	product

Computing Area

} So	the	area	of	the	triangle	ABC	would	be:
} 𝐴𝑟𝑒𝑎 𝐴𝐵𝐶 = gVk × 6Vk

T
} We	can	further	optimize	the	computation	
of	the	length	of	the	cross	product	by	
dotting	it	with	the	normal	vector:
} 𝐴𝑟𝑒𝑎 𝐴𝐵𝐶 = 𝐵 − 𝐴 × 𝐶 − 𝐴 d 𝑛

} (see	http://www.scratchapixel.com/old/lessons/3d-basic-lessons/lesson-9-
ray-triangle-intersection/barycentric-coordinates/ for	more	detail	of	the	proof)



COMP 175 | COMPUTER GRAPHICS

Erik	Anderson 43/4109	– Ray	Casting

} Assuming	that	Q	is	inside	the	triangle	ABC,	we	can	
write	it	all	as:
} 𝐴𝑟𝑒𝑎kg6 = 𝐵 − 𝐴 × 𝐶 − 𝐴 d 𝑛
} 𝐴𝑟𝑒𝑎{g6 = 𝐶 − 𝐵 × 𝑄 − 𝐵 d 𝑛
} 𝐴𝑟𝑒𝑎k{6 = 𝐴 − 𝐶 × 𝑄 − 𝐶 d 𝑛
} 𝐴𝑟𝑒𝑎kg{ = 𝐵 − 𝐴 × 𝑄 − 𝐴 d 𝑛

} Which	means:
} 𝛼 = kH]z|}~

kH]z�}~

} 𝛽 = kH]z�|~
kH]z�}~

} 𝜃 = kH]z�}|
kH]z�}~

Finally


