Refresher

- How do you multiply a (3x3) matrix by 3D vector?

- How do you multiply two 3x3 matrices?

\[
\begin{bmatrix}
0.20 & 0.93 & 0.64 & 1.20 \\
0.65 & 0.82 & 0.75 & 1.40 \\
0.95 & 1.10 & 0.52 & 3.20 \\
1.15 & 0.20 & 1.25 & 2.25
\end{bmatrix}, \text{ what are the 4 basis vectors?}
\]

- How did you find those?

- Matrix as a coordinate transform

 - What happens if you have a 2x3 matrix (2 rows, 3 columns) and we multiply it by a 3D vector?
 - What happens if we have a 3x2 matrix (3 rows, 2 columns) and we multiply it by a 3D vector?
Refresher

- Write out the basic forms for a 2D:
 - Scaling matrix
 - Rotation matrix
 - Translation matrix

- Why is Translation transform affine but not linear?

- Why do we use 4x4 Matrices in 3D?

- How are Points and Vectors represented differently, and why?
Exercise

- Window Transformations:
 - Given a window (rectangle) with bounding coordinates \((u_1, v_2), (u_2, v_2)\)
 - Create a matrix that can both move and scale this matrix so that the new bounding box is \((x_1, y_1), (x_2, y_2)\)
Exercise - Solution

\[
\begin{bmatrix}
\frac{(x_2-x_1)}{(u_2-u_1)} & 0 & \frac{(x_1 u_2 - x_2 u_1)}{(u_2 - u_1)} \\
0 & \frac{(y_2-y_1)}{(v_2-v_1)} & \frac{(y_1 v_2 - y_2 v_1)}{(v_2 - v_1)} \\
0 & 0 & 1
\end{bmatrix}
\]

- This is important! Think about what this means for 2D graphics and visualization.
- In 3D graphics, this is also commonly used to create viewports. So this matrix is known as the “window-to-viewport” transformation.
Questions?
Matrix Inverse

For Scaling, we have:

- $v' = Sv$

- where \[
 \begin{bmatrix}
 x' \\
 y' \\
 1
 \end{bmatrix} = \begin{bmatrix}
 S_x & 0 & 0 \\
 0 & S_y & 0 \\
 0 & 0 & 1
 \end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix}
\]

If I want to go backwards, that is, if I was given x', y', how would I find x and y?

- In other words, I want:
- $v = S^{-1}v'$
- Find S^{-1}
Matrix Inverse

- If I want to go backwards, that is, if I was given x', y', how would I find x and y?
 - In other words, I want:
 - $v = S^{-1}v'$
 - Find S^{-1}

- If we look at it at a component level:
 - $x' = S_x x$, and $y' = S_y y$, then
 - $x = \frac{1}{S_x} x'$, and $y = \frac{1}{S_y} y'$
If we look at it at a component level:

- \(x' = S_x x, \)
 \(\text{and} \ y' = S_y y, \) then
- \(x = \frac{1}{S_x} x', \)
 \(\text{and} \ y = \frac{1}{S_y} y' \)

Let’s put that back into a matrix form:

\[v = S^{-1} v' \]

where

\[
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
= \begin{bmatrix}
 \frac{1}{S_x} & 0 & 0 \\
 0 & \frac{1}{S_y} & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix}
\]

Matrix Inverse
Matrix Inverse

\[S = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad S^{-1} = \begin{bmatrix} \frac{1}{S_x} & 0 & 0 \\ 0 & \frac{1}{S_y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Notice that if we were to multiply the two together:

- \(SS^{-1} \) or \(S^{-1} S \), we get back the identity matrix

\[I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

In other words: \(SS^{-1} = I, = S^{-1}S \)
Matrix Inverse

- **Definition:**
 - \(AA^{-1} = I = A^{-1}A \)

- **Inverting composed matrices:**
 - \((AB)^{-1} = B^{-1}A^{-1}\)
 - Note, \((AB)^{-1} \neq A^{-1}B^{-1}\)

- It is important to note that a matrix is not always invertible. A matrix will not be invertible if:
 - It is not a square matrix (\(nxn\) matrix)
 - It has row/column of all zeros (because the row/col can be deleted)
 - If any row/col is a multiple of any other row/col (if a row is not linearly independent)

- Matrices for Rotation, Scaling, Translation (using homogeneous coordinates) will always have inverses!
One Way To Think About Inverses…

- Is to think of an inverse as an “undo”
- For example, if A scales by a factor of 2 and rotates 135 degrees, then A^{-1} will rotate by -135 degrees and scale by 0.5
Finding Inverse Matrices…

- We have found the inverse matrix of a Scaling matrix.

\[
S^{-1} = \begin{bmatrix}
\frac{1}{S_x} & 0 & 0 \\
0 & \frac{1}{S_y} & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

- Let’s find the inverse matrix of a Translation matrix

\[
T = \begin{bmatrix}
1 & 0 & dx \\
0 & 1 & dy \\
0 & 0 & 1
\end{bmatrix}
\]
Finding Inverse Matrices...

- This is pretty simple, we just want to “subtract” the change...

\[T^{-1} = \begin{bmatrix} 1 & 0 & -dx \\ 0 & 1 & -dy \\ 0 & 0 & 1 \end{bmatrix} \]

- What about Rotation matrix?

\[R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
Inverse Rotation Matrix

- Regular Rotation Matrix:
 \[R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

- Inverse Rotation Matrix:
 \[R^{-1}_\theta = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
Recap of Inverses

- For Scaling, we have:
 - \(v = S^{-1}v' \)
 - where \[
 \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 \frac{1}{s_x} & 0 & 0 \\
 0 & \frac{1}{s_y} & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x' \\
 y' \\
 1
 \end{bmatrix}
 \]

- For Rotation, we have:
 - \(v = R_{\theta}^{-1}v' \)
 - where \[
 \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 \cos \theta & \sin \theta & 0 \\
 -\sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x' \\
 y' \\
 1
 \end{bmatrix}
 \]

- For Translation, we have:
 - \(v = T^{-1}v' \)
 - where \[
 \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 1 & 0 & -dx \\
 0 & 1 & -dy \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x' \\
 y' \\
 1
 \end{bmatrix}
 \]
Questions?
Matrix Transpose

What is the transpose of a matrix A?

It’s making the rows of the matrix its columns, and its columns become rows.

Or, you can think of it as: “turning the matrix by 90 degrees.”

$A = \begin{bmatrix} v_{1x} & v_{1y} & v_{1z} \\ v_{2x} & v_{2y} & v_{2z} \\ v_{3x} & v_{3y} & v_{3z} \end{bmatrix}$, $A^T = \begin{bmatrix} v_{1x} & v_{2x} & v_{3x} \\ v_{1y} & v_{2y} & v_{3y} \\ v_{1z} & v_{2z} & v_{3z} \end{bmatrix}$
Neat Fact about Rotation Matrix

- The inverse of a Rotation Matrix R_θ is the same as its transpose R_θ^T.
 - In other words, $R_\theta^{-1} = R_\theta^T$
- Let’s prove this... First, we note the properties of $R_\theta = [v_1 \ v_2 \ v_3]$
 - Columns are orthogonal to each other (e.g., $v_1 \cdot v_2 = 0$)
 - Columns represent unit vectors: $||v_i|| = 0$
- Let’s multiply R_θ^T by R_θ:
 $$
 \begin{bmatrix}
 v_{1x} & v_{1y} & v_{1z} \\
 v_{2x} & v_{2y} & v_{2z} \\
 v_{3x} & v_{3y} & v_{3z}
 \end{bmatrix}
 \begin{bmatrix}
 v_{1x} & v_{2x} & v_{3x} \\
 v_{1y} & v_{2y} & v_{3y} \\
 v_{1z} & v_{2z} & v_{3z}
 \end{bmatrix}
 =
 \begin{bmatrix}
 v_1 \cdot v_1 & v_1 \cdot v_2 & v_1 \cdot v_3 \\
 v_2 \cdot v_1 & v_2 \cdot v_2 & v_2 \cdot v_3 \\
 v_3 \cdot v_1 & v_3 \cdot v_2 & v_3 \cdot v_3
 \end{bmatrix}
 $$
 \therefore Neat Fact about Rotation Matrix
Neat Fact about Rotation Matrix

- Let’s multiply R^T_{θ} by R_{θ}:

$$
\begin{bmatrix}
v_1 x & v_1 y & v_1 z \\
v_2 x & v_2 y & v_2 z \\
v_3 x & v_3 y & v_3 z
\end{bmatrix}
\begin{bmatrix}
v_1 x & v_2 x & v_3 x \\
v_1 y & v_2 y & v_3 y \\
v_1 z & v_2 z & v_3 z
\end{bmatrix}
=
\begin{bmatrix}
v_1 \cdot v_1 & v_1 \cdot v_2 & v_1 \cdot v_3 \\
v_2 \cdot v_1 & v_2 \cdot v_2 & v_2 \cdot v_3 \\
v_3 \cdot v_1 & v_3 \cdot v_2 & v_3 \cdot v_3
\end{bmatrix}
$$

- Based on our rules, the right hand side comes out to:

$$
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix},
$$

which is the identity matrix. This means that $R^T_{\theta} R_{\theta} = I$, by definition, $R^T_{\theta} = R_{\theta}^{-1}$
Questions?
Composition of Transformations!

- For Scaling, we have:
 - \(v' = S v \)

- For Rotation, we have:
 - \(v' = R_\theta v \)

- For Translation, we have:
 - \(v' = T v \)
Composition of Transformations!

- So, if I want to combine the 3 transformations...
 - \(v' = Sv \)
 - \(v'' = R_\theta v' \)
 - \(v'''' = T v'' \)

- This means:
 - \(v'''' = T v'' \)
 - \(v'''' = T(R_\theta v') \)
 - \(v'''' = T(R_\theta(Sv)) \)
 - \(v'''' = TR_\theta Sv \)
Composition of Transformations!

- \(v''' = T R_\theta S v \)

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & dx \\
0 & 1 & dy \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

- Recall that matrix operations are associative. Meaning that:
 - \((1+2)+3 = 1+(2+3),\)
- But it is not commutative:
 - \(1+2+3 \neq 3+2+1\)

- This means that I can pre-multiply \(T R_\theta S = M, \) so that
 - \(v''' = M v, \) where
 \[
 M = \begin{bmatrix}
 S_x \cos \theta & S_y (-\sin \theta) & dx \\
 S_x \sin \theta & S_y \cos \theta & dy \\
 0 & 0 & 1
 \end{bmatrix}
 \]
Composition of Transformations!

- Remember, **ORDER MATTERS**!

- So
 - $v' = TR_\theta v \neq R_\theta Tv$

- For Example....
Not commutative

Translate by \(x=6, \ y=0 \) then rotate by 45°

Rotate by 45° then translate by \(x=6, \ y=0 \)
Composition (an example) (2D)

- Start:

- Goal:

Important concept: Make the problem simpler

Translate object to origin first, scale, rotate, and translate back

$T^{-1}RST$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos90 & -\sin90 & 0 \\ \sin90 & \cos90 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Apply to all vertices

Rotate 90°
Uniform Scale 3x
Both around object’s center, not the origin
Composition (an example) (2D) (2/2)

- $T^{-1}RST$

- But what if we mixed up the order? Let’s try $RT^{-1}ST$

$$
\begin{bmatrix}
\cos90 & -\sin90 & 0 \\
\sin90 & \cos90 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -2 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{bmatrix}
$$

- Oops! We managed to scale it properly but when we rotated it we rotated the object about the origin, not its own center, shifting its position... **Order Matters!**

Questions?
Inverse Composite Matrix

- Recall that:
 - \((ABC)^{-1} = C^{-1}B^{-1}A^{-1}\)

- Why is that?

- For example:
 - Let \(M = TR_\theta\), then \(M^{-1} = (TR_\theta)^{-1} = R_\theta^{-1}T^{-1}\)
 - In terms of operations, it makes sense:
 - 1) Rotate
 - 2) Translate
 - In reverse, I would want to
 - 1) Reverse Translate
 - 2) Reverse Rotate
Inverses Revisited

- What is the inverse of a sequence of transformations?
 \[(M_1 M_2 \ldots M_n)^{-1} = M_n^{-1} M_{n-1}^{-1} \ldots M_1\]

- Inverse of a sequence of transformations is the composition of the inverses of each transformation in reverse order.

- Say from our previous example we wanted to do the opposite, what will our sequence look like?
 \[(T^{-1}RST)^{-1} = T^{-1}S^{-1}R^{-1}T\]

- We still translate to origin first, then translate back at the end!
Questions?
Transforming Coordinate Axes

- We understand linear transformations as changing the position of vertices relative to the standard axes.
- Can also think of transforming the coordinate axes themselves.

Rotation
Scaling
Translation

- Just as in matrix composition, be careful of which order you modify your coordinate system.
Mapping It to 3D

- We have been doing everything in 2D. What happens in 3D Cartesian Coordinate System?
Composition of Transformations!

- For Scaling, we have:
 - \(v' = Sv \)

- For Rotation, we have:
 - \(v' = R_{\theta}v \)

- For Translation, we have:
 - \(v' = Tv \)
Rotation

- Rotation by angle θ around vector $\mathbf{w} = \begin{bmatrix} W_x \\ W_y \\ W_z \end{bmatrix}$

- Here's a not so friendly rotation matrix:

\[
\begin{bmatrix}
W_x^2 + \cos(\theta)(W_y^2 + W_z^2) & W_x W_y (1 - \cos(\theta)) + W_z \sin(\theta) & W_x W_z (1 - \cos(\theta)) + W_y \sin(\theta) & 0 \\
W_x W_y (1 - \cos(\theta)) + W_z \sin(\theta) & W_y^2 + \cos(\theta)(W_x^2 + W_z^2) & W_y W_z (1 - \cos(\theta)) - W_x \sin(\theta) & 0 \\
W_x W_z (1 - \cos(\theta)) - W_y \sin(\theta) & W_y W_z (1 - \cos(\theta)) + W_x \sin(\theta) & W_z^2 + \cos(\theta)(W_y^2 + W_x^2) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- This is called the coordinate form of Rodrigues’s formula

- Let’s try a different way...
Rotating axis by axis (1/2)

- Every rotation can be represented as the composition of 3 different angles of **CLOCKWISE** rotation around 3 axes, namely
 - x-axis in the yz plane by ψ
 - y-axis in the xz plane by θ
 - z-axis in the xy plane by ϕ

- Also known as Euler angles, makes the problem of rotation much easier to deal with

<table>
<thead>
<tr>
<th>$R_{xy}(\phi)$</th>
<th>$R_{yz}(\psi)$</th>
<th>$R_{xz}(\theta)$</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
cos\phi & -sin\phi & 0 & 0 \\
sin\phi & cos\phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & cos\psi & -sin\psi & 0 \\
0 & sin\psi & cos\psi & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
cos\theta & 0 & sin\theta & 0 \\
0 & 1 & 0 & 0 \\
-sin\theta & 0 & cos\theta & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] |

- R_{yz}: rotation around the x axis, R_{xz}: rotation about the y axis,
- R_{xy}: rotation about the z axis

- You can compose these matrices to form a composite rotation matrix
Rotating axis by axis (2/2)

- It would still be difficult to find the 3 angles to rotate by given arbitrary axis \(w \) and specified angle \(\psi \)
- Solution? Make the problem easier

 - **Step 1:** Find a \(\theta \) to rotate around \(y \) axis to put \(w \) in the \(xy \) plane

 - **Step 2:** Then find a \(\phi \) to rotate around the \(z \) axis to align \(w \) with the \(x \) axis

 - **Step 3:** Rotate by \(\psi \) around \(x \) axis = \(w \) axis

 - **Step 4:** Finally, undo the alignment rotations (inverse)

- Rotation Matrix: \(M = R_{xz}^{-1}(\theta)R_{xy}^{-1}(\phi)R_{yz}(\psi)R_{xy}(\phi)R_{xz}(\theta) \)
Inverses and Composition in 3D!

- Inverses are once again parallel to their 2D versions...

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Matrix Inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling</td>
<td>$\begin{bmatrix} 1/s_x & 0 & 0 & 0 \ 0 & 1/s_y & 0 & 0 \ 0 & 0 & 1/s_z & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Rotation</td>
<td>$\begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & \cos\psi & \sin\psi & 0 \ 0 & -\sin\psi & \cos\psi & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} \cos\phi & \sin\phi & 0 & 0 \ -\sin\phi & \cos\phi & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} \cos\theta & 0 & -\sin\theta & 0 \ 0 & 1 & 0 & 0 \ \sin\theta & 0 & \cos\theta & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Translation</td>
<td>$\begin{bmatrix} 1 & 0 & 0 & -dx \ 0 & 1 & 0 & -dy \ 0 & 0 & 1 & -dz \ 0 & 0 & 0 & 1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

- Composition works exactly the same way...
Example in 3D!

- Let’s take some 3D object, say a cube, centered at (2,2,2)
- Rotate in object’s space by 30° around x axis, 60° around y and 90° around z
- Scale in object space by 1 in the x, 2 in the y, 3 in the z
- Translate by (2,2,4)
- Transformation Sequence: $T_{T_0}^{-1} R_{xy} R_{xz} R_{yz} S T_0$, where T_0 translates to (0,0)

$$
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
cos90 & sin90 & 0 & 0 \\
-sin90 & cos90 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
cos30 & 0 & -sin30 & 0 \\
0 & 1 & 0 & 0 \\
sin30 & 0 & cos30 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 2 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & -2 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & -2
\end{bmatrix}

\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
Questions?
How to Invert a Matrix

- We’re going to use Gauss-Jordan elimination
- Finding A^{-1} with Gauss-Jordan elimination is done by augmenting A with I to get $[A|I]$, then reducing the new matrix into reduced row echelon form ($rref$) to get a new matrix. This new matrix will be of the form $[I|A^{-1}]$
- What does $rref$ really mean?
 - If a row does not consist entirely of zeros, then the first nonzero number in the row is a 1. (Call this a leading 1)
 - If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix.
 - If any two successive rows do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row
 - Each column that contains a leading 1 has zeros everywhere else.
How to Invert a Matrix

- To transform a matrix into rref we are allowed to perform any of the three elementary row operations. These are:
 - Multiply a row by a nonzero constant
 - Interchange two rows
 - Add a multiple of one row to another row
How to Invert a Matrix, Example

- Given: $A = \begin{bmatrix} 11 & 13 \\ 17 & 19 \end{bmatrix}$, let's find A^{-1}:

1. Augment this with the identity:
 $$ [A|I] = \begin{bmatrix} 11 & 13 & 1 & 0 \\ 17 & 19 & 0 & 1 \end{bmatrix} $$

2. Row operation 1: multiply row 1 by $1/11$
 $$ \begin{bmatrix} 1 & \frac{13}{11} & \frac{1}{11} & 0 \\ 17 & 19 & 0 & 1 \end{bmatrix} $$

3. Row operation 3: multiply row 1 by -17 and add it to row 2:
 $$ \begin{bmatrix} 1 & \frac{13}{11} & \frac{1}{11} & 0 \\ 0 & -\frac{12}{11} & -\frac{17}{11} & 1 \end{bmatrix} $$
How to Invert a Matrix, Example

4. Row operation 1, multiply row 2 by $-11/12$

\[
\begin{bmatrix}
1 & 13/11 & 1 & 0 \\
0 & 11/12 & 17/12 & -11/12
\end{bmatrix}
\]

5. Row operation 3: multiply row 2 by $-13/11$ and add to row 1

\[
[I|A] = \begin{bmatrix}
1 & 0 & -19/12 & 13/12 \\
0 & 1 & 17/12 & -11/12
\end{bmatrix}
\]

6. Therefore:

\[
A^{-1} = \begin{bmatrix}
-19/12 & 13/12 \\
17/12 & -11/12
\end{bmatrix}
\]
Questions?
Addendum – Matrix Notation

- The application of matrices in the row vector notation is executed in the reverse order of applications in the column vector notation:
 \[
 \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 \leftrightarrow
 \begin{bmatrix}
 x & y & z
 \end{bmatrix}
 \]

- Column format: vector follows transformation matrix:
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z'
 \end{bmatrix} =
 \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 \]

- Row format: vector precedes matrix and is post-multiplied by it:
 \[
 \begin{bmatrix}
 x' & y' & z'
 \end{bmatrix} =
 \begin{bmatrix}
 x & y & z
 \end{bmatrix}
 \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
 \end{bmatrix}
 \]

- By convention, we always use **Column Format**
Addendum – Matrix Notation

- Uh... A problem:

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
=
\begin{bmatrix}
 ax + by + cz \\
 dx + ey + fz \\
 gx + hy + iz
\end{bmatrix}
\]

- While:

\[
\begin{bmatrix}
 x & y & z
\end{bmatrix}
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
=
\begin{bmatrix}
 ax + dy + gz \\
 bx + ey + hz \\
 cx + fy + iz
\end{bmatrix}
\]
Addendum – Matrix Notation

- In order for both types of notations to yield the same result, a matrix in the row system must be the transpose of the matrix in the column system.

- Recall: \(M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, \quad M^T = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} \)

- In order to make the two notations line up:

 \[
 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{bmatrix} ax + by + cz & dx + ey + fz & gx + hy + iz \end{bmatrix}
 \]

- Be careful! Different textbooks and different graphics packages use different notations! First understand which one they use!!
Why Column-Format Notation?

- Because it fits more naturally to OpenGL’s stacks

- For example, for a series of matrix operations: $T^{-1}RST$, how would you write this using GL calls?

- What happens when I have multiple objects?
 - For example, the solar system?...
Questions?
Converting Math to OpenGL Code

- Let’s say that you have a set of transforms:
 - $M = T^{-1}RST$

- Writing this in OpenGL would look something like:

  ```
  glTranslate3f(-xtrans, -ytrans, -ztrans);
  glRotate3f (angle, x_axis, y_axis, z_axis);
  glScale3f (xscale, yscale, zscale);
  glTranslate3f (xtrans, ytrans, ztrans);
  DrawObject();
  ```

- Or, you can do this in software (SLOW) using the Algebra.h library.
  ```
  Matrix t_invM = inv_trans_mat (transVec);
  Matrix rotM = rot_mat (rotVec, angle);
  Matrix scaleM = scale_mat(scaleVec);
  Matrix tM = trans_mat (transVec);
  Matrix composite = t_invM * rotM * scaleM * tM;
  for (each vertex in object) {
    Point newPos = composite * vertex->getPosition();
  }
  ```