Prelude
- What is the common name of the fruit *Synsepalum dulcificum*?
- “Miracle fruit” – from West Africa
- What is special about miracle fruit?
- Contains a protein called miraculin
- In an acidic environment, binds to “sweet” receptors in taste buds
- Sour becomes sweet
 - Lemons and limes, Tabasco sauce, stinky cheese, dark beer
- “Flavor tripping” – lasts about an hour

Next step
- Parsing: Organize tokens into “sentences”
 - Do tokens conform to language syntax?
 - Good news: token types are just numbers
 - Bad news: language syntax is fundamentally more complex than lexical specification
 - Good news: we can still do it in linear time in most cases

Parsing
- Parser
 - Reads tokens from the scanner
 - Checks organization of tokens against a grammar
 - Constructs a derivation
 - Derivation drives construction of IR

Study of parsing
- Discovering the derivation of a sentence
 - “Diagramming a sentence” in grade school
- Formalization:
 - Mathematical model of syntax – a grammar G
 - Algorithm for testing membership in $L(G)$
- Roadmap:
 - Context-free grammars
 - Top-down parsers
 - Ad hoc, often hand-coded, recursive decent parsers
 - Bottom-up parsers
 - Automatically generated LR parsers

Specifying syntax with a grammar
- Can we use regular expressions?
 - For the most part, no
- Limitations of regular expressions
 - Need something more powerful
 - Still want formal specification (for automation)
- Context-free grammar
 - Set of rules for generating sentences
 - Expressed in Backus-Naur Form (BNF)
Context-free grammar

- Example:

  ```
  \begin{align*}
  &\text{sheepnoise} \rightarrow \text{sheepnoise baa} \\
  &\text{baa} \rightarrow \text{baa} | \text{baa}
  \end{align*}
  ```

- Formally: context-free grammar is

 $G = (s, N, T, P)$

 - T: set of terminals (provided by scanner)
 - N: set of non-terminals (represent structure)
 - $s \in N$: start or goal symbol
 - $P : N \rightarrow (N \cup T)^*$: set of production rules

Language L(G)

- Language L(G)

 $L(G)$ is all sentences generated from start symbol

 Generating sentences

 - Use productions as rewrite rules
 - Start with goal (or start) symbol – a non-terminal
 - Choose a non-terminal and "expand" it to the right-hand side of one of its productions
 - Only terminal symbols left → sentence in L(G)

 Intermediate results known as sentential forms

Expressions

- Language of expressions

 - Numbers and identifiers
 - Allow different binary operators
 - Arbitrary nesting of expressions

  ```
  \begin{align*}
  \text{expr} &\rightarrow \text{expr} \ op \ \text{expr} \\
  &\mid \text{number} \\
  \text{op} &\rightarrow + | - | * | / 
  \end{align*}
  ```

Language of expressions

- What’s in this language?

 We can build the string "x - 2 * y"

 This string is in the language

Derivations

- Using grammars

 - A sequence of rewrites is called a derivation
 - Discovering a derivation for a string is parsing

 Different derivations are possible

- Rightmost derivation: always choose right NT

- Leftmost derivation: always choose left NT

 (Other “random” derivations – not of interest)

Left vs right derivations

- Two derivations of "x - 2 * y"

  ```
  \begin{align*}
  &\text{x} \rightarrow \text{expr} - \text{expr} \ op \ \text{expr} \\
  &\mid \text{number} \\
  &\mid \text{expr} \ op \ \text{expr} \\
  &\mid \text{number} \\
  &\mid \text{ident} \\
  &\mid \text{expr} \ - \ \text{number} \ op \ \text{expr} \\
  &\mid \text{number} \ op \ \text{expr} \\
  &\mid \text{ident} \\
  \end{align*}
  ```

  ```
  \begin{align*}
  &\text{x} \rightarrow \text{expr} - \text{expr} \ op \ \text{expr} \\
  &\mid \text{number} \\
  &\mid \text{expr} \ op \ \text{expr} \\
  &\mid \text{number} \\
  &\mid \text{ident} \\
  &\mid \text{expr} \ - \ \text{number} \ op \ \text{expr} \\
  &\mid \text{number} \ op \ \text{expr} \\
  &\mid \text{ident} \\
  \end{align*}
  ```

 Left-most derivation

 Right-most derivation
Derivations and parse trees

- Two different derivations
 - Both are correct
 - Do we care which one we use?
- Represent derivation as a parse tree
 - Leaves are terminal symbols
 - Inner nodes are non-terminals
 - To depict production $\alpha \rightarrow \beta \gamma \delta$
 - show nodes β, γ, δ as children of α

- Tree is used to build internal representation

Example (I)

- Concrete syntax tree
 - Shows all details of syntactic structure
 - What’s the problem with this tree?

Example (II)

- Abstract syntax tree
 - Parse tree contains extra junk
 - Eliminate intermediate nodes
 - Move operators up to parent nodes
 - Result: abstract syntax tree

- Problem: Evaluates as $(x - 2) \times y$

Example (II) solution

- Solution: evaluates as $x - (2 \times y)$

Derivations and semantics

- Problem:
 - Two different valid derivations
 - One captures “meaning” we want
 - (What specifically are we trying to capture here?)
 - Key idea: shape of tree implies its meaning
- Can we express precedence in grammar?
 - Notice: operations deeper in tree evaluated first
 - Solution: add an intermediate production
 - New production isolates different levels of precedence
 - Force higher precedence “deeper” in the grammar
4

Adding precedence

- Two levels:
 - Level 1: lower precedence – higher in the tree
 - Level 2: higher precedence – deeper in the tree

- Observations:
 - Larger: requires more rewriting to reach terminals
 - But, produces same parse tree under both left and right derivations

#	Production rule
1	expr → expr + term
2	expr - term
3	term
4	term → term * factor
5	term / factor
6	factor
7	factor → number
8	identifier

With precedence

In class questions

- What if I want \((x-2) \ast y\)?
- Some common patterns...

Another issue

- Original expression grammar:

#	Production rule
1	expr → expr op expr
2	number
3	identifier
4	op
5	+
6	*
7	/

Another issue

- Multiple leftmost derivations
- Such a grammar is called ambiguous
- Is this a problem?
- Very hard to automate parsing

Rule	Sentential form
expr	expr op expr
expr op expr	expr op expr
\(<id, x>\) op expr	\(<id, x>\) op expr
\(<id, x>\) -> expr op expr	\(<id, x>\) -> expr op expr
\(<id, x>\) + expr	\(<id, x>\) + expr
\(<id, x>\) * expr	\(<id, x>\) * expr
\(<id, x>\) -> \(<num, 2>\) * expr	\(<id, x>\) -> \(<num, 2>\) * expr
\(<id, x>\) -> \(<num, 2>\) + expr	\(<id, x>\) -> \(<num, 2>\) + expr

Right-most derivation

Now right derivation yields \(x - (2 \ast y)\)

Our favorite string: \(x - 2 \ast y\)
Ambiguous grammars

- A grammar is ambiguous iff:
 - There are multiple leftmost or multiple rightmost derivations for a single sentential form
 - Note: leftmost and rightmost derivations may differ, even in an unambiguous grammar

 Intuitively:
 - We can choose different non-terminals to expand
 - But each non-terminal should lead to a unique set of terminal symbols

- What’s a classic example?
 - If-then-else ambiguity

If-then-else

- Grammar:

  ```
  stmt -> if expr then stmt |
  if expr then stmt else stmt |
  ...
  ```

- Problem: nested if-then-else statements
 - Each one may or may not have else
 - How to match each else with if

Removing ambiguity

- Restrict the grammar
 - Choose a rule: “else” matches innermost “if”
 - Codify with new productions

  ```
  stmt -> if expr then stmt |
  if expr then stmt withelse else stmt |
  ...
  ```

 Intuition: when we have an “else”, all preceding nested conditions must have an “else”

Parsing

- What is parsing?
 - Discovering the derivation of a string
 - if it exists
 - Harder than generating strings
 - Not surprisingly

 Two major approaches
 - Top-down parsing
 - Bottom-up parsing

 Don’t work on all context-free grammars
 - Properties of grammar determine parse-ability
 - Our goal: make parsing efficient
 - We may be able to transform a grammar
Two approaches

- **Top-down parsers** LL(1), recursive descent
 - Start at the root of the parse tree and grow toward leaves
 - Pick a production and try to match the input
 - What happens if the parser chooses the wrong one?

- **Bottom-up parsers** LR(1), operator precedence
 - Start at the leaves and grow toward root
 - Issue: might have multiple possible ways to do this
 - Key idea: encode possible parse trees in an internal state
 (similar to our NFA → DFA conversion)
 - Bottom-up parsers handle a large class of grammars

Grammars and parsers

- **LL(1) parsers**
 - Left-to-right input
 - Leftmost derivation
 - 1 symbol of look-ahead

- **LR(1) parsers**
 - Left-to-right input
 - Rightmost derivation
 - 1 symbol of look-ahead

 Also: LL(k), LR(k), SLR, LALR, …

Top-down parsing

- Start with the root of the parse tree
 - Root of the tree: node labeled with the start symbol

- Algorithm:
 - Repeat until the fringe of the parse tree matches input string
 - At a node A, select one of A’s productions
 - Add a child node for each symbol on rhs
 - Find the next node to be expanded (a non-terminal)

- Done when:
 - Leaves of parse tree match input string (success)

Example

- **Expression grammar** (with precedence)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential form</th>
<th>Input string</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>expr</td>
<td>x - 2 * y</td>
</tr>
<tr>
<td>2</td>
<td>expr + term</td>
<td>↑</td>
</tr>
<tr>
<td>3</td>
<td>form + term</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>term</td>
<td>x - 2 * y</td>
</tr>
<tr>
<td>5</td>
<td>term * factor</td>
<td>↑</td>
</tr>
<tr>
<td>6</td>
<td>factor + term</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>factor</td>
<td>x - 2 * y</td>
</tr>
<tr>
<td>8</td>
<td><id> + term</td>
<td></td>
</tr>
</tbody>
</table>

Problem:

- Can’t match next terminal
- We guessed wrong at step 2
- What should we do now?

Backtracking

- If we can’t match next terminal:
 - Rollback productions
 - Choose a different production for expr
 - Continue

Grammars that they can handle are called LL(1) grammars

Grammars that they can handle are called LR(1) grammars

Example

- Input string: x - 2 * y
Retrying

- Problem:
 - More input to read
 - Another cause of backtracking

Successful parse

- Problem: termination
 - Wrong choice leads to infinite expansion
 (More importantly: without consuming any input!)
 - May not be as obvious as this
 - Our grammar is left recursive

Notation

- Non-terminals
 - Capital letter: A, B, C
- Terminals
 - Lowercase, underline: x, y, z
 - Some mix of terminals and non-terminals
- Greek letters: α, β, γ
- Example:

Eliminating left recursion

- Fix this grammar:

 Language is β followed by zero or more α

- Rewrite as:

 These two productions give you zero or more α

 New non-terminal
Back to expressions

- Two cases of left recursion:
 - How do we fix these?

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>expr → expr + term</td>
</tr>
<tr>
<td>2</td>
<td>expr → expr - term</td>
</tr>
<tr>
<td>3</td>
<td>expr → term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>term → term * factor</td>
</tr>
<tr>
<td>5</td>
<td>term → term / factor</td>
</tr>
<tr>
<td>6</td>
<td>term → factor</td>
</tr>
</tbody>
</table>

Eliminating left recursion

- Resulting grammar
 - All right recursive
 - Retain original language and associativity
 - Not as intuitive to read
 - Top-down parser
 - Will always terminate
 - May still backtrack

Top-down parsers

- **Problem**: Left-recursion
- **Solution**: Technique to remove it
- What about backtracking?
 - Current algorithm is brute force
- **Problem**: how to choose the right production?
 - Idea: use the next input token (duh)
 - How? Look at our right-recursive grammar…

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>expr → term expr2</td>
</tr>
<tr>
<td>2</td>
<td>expr2 → + term expr2</td>
</tr>
<tr>
<td>3</td>
<td>expr2 → - term expr2</td>
</tr>
<tr>
<td>4</td>
<td>expr2 → ε</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>term → factor term2</td>
</tr>
<tr>
<td>5</td>
<td>term2 → * factor term2</td>
</tr>
<tr>
<td>6</td>
<td>term2 → / factor term2</td>
</tr>
<tr>
<td>7</td>
<td>term2 → ε</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>factor → number</td>
</tr>
<tr>
<td>10</td>
<td>factor → identifier</td>
</tr>
</tbody>
</table>

Lookahead

- **Goal**: avoid backtracking
 - Look at future input symbols
 - Use extra context to make right choice
- How much lookahead is needed?
 - In general, an arbitrary amount is needed for the full class of context-free grammars
 - Use fancy-dancy algorithm **CYK algorithm, O(n^3)**
- Fortunately,
 - Many CFGs can be parsed with limited lookahead
 - Covers most programming languages **not C++ or Perl**

Top-down parsing

- **Goal**:
 - Given productions $A \rightarrow \alpha | \beta$, the parser should be able to choose between α and β
- **Trying to match A**
 - How can the next input token help us decide?
 - **Solution**: First sets (almost a solution)
 - Informally:
 - $\text{First}(\alpha)$ is the set of tokens that could appear as the first symbol in a string derived from α
 - **Def**: x in $\text{First}(\alpha)$ iff $\alpha \Rightarrow^* x$

Right-recursive grammar

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>expr → term expr2</td>
</tr>
<tr>
<td>2</td>
<td>expr2 → + term expr2</td>
</tr>
<tr>
<td>3</td>
<td>expr2 → - term expr2</td>
</tr>
<tr>
<td>4</td>
<td>expr2 → ε</td>
</tr>
<tr>
<td>5</td>
<td>term → factor term2</td>
</tr>
<tr>
<td>6</td>
<td>term2 → * factor term2</td>
</tr>
<tr>
<td>7</td>
<td>term2 → / factor term2</td>
</tr>
<tr>
<td>8</td>
<td>term2 → ε</td>
</tr>
<tr>
<td>9</td>
<td>factor → number</td>
</tr>
<tr>
<td>10</td>
<td>factor → identifier</td>
</tr>
</tbody>
</table>
Top-down parsing

- Building First sets

 We'll look at this algorithm later

- The LL(1) property

 Given $A \rightarrow \alpha$ and $A \rightarrow \beta$, we would like:

 $\text{FIRST}(A \rightarrow \alpha) \cap \text{FIRST}(A \rightarrow \beta) = \emptyset$

 Parser can make right choice by with one lookahead token

 almost...

 What are we not handling?

- What about ε productions?

 Complicates the definition of LL(1)

 Consider $A \rightarrow \alpha$ and $A \rightarrow \beta$ and α may be empty

 In this case there is no symbol to identify α

- Example:

 What is $\text{FIRST}(\#4)$?

 $= \{ \varepsilon \}$

 What would tells us we are matching production 4?

- If A was empty

 What will the next symbol be?

 Must be one of the symbols that immediately follows an A

- Solution

 Build a Follow set for each symbol that could produce ε

- Extra condition for LL:

 $\text{FIRST}(A \rightarrow \beta)$ must be disjoint from $\text{FIRST}(A \rightarrow \alpha)$ and $\text{FOLLOW}(A)$

More on First and Follow

- Notice:

 FIRST and FOLLOW are sets

 FIRST may contain ε in addition to other symbols

- Question:

 What is $\text{FIRST}(\#2)$?

 $= \text{FIRST}(B) = \{ \varepsilon, x, y, z \}$

- Question:

 When would we care about FOLLOW(A)?

 Answer: if First(C) contains ε

LL(1) property

- Key idea:

 Build parse tree top-down

 Use look-ahead token to pick next production

 Each production must be uniquely identified by the terminal symbols that may appear at the start of strings derived from it.

- Def: $\text{FIRST}(A \rightarrow \alpha)$ as

 $\text{FIRST}(\alpha) \cup \text{FOLLOW}(A)$, if $\varepsilon \in \text{FIRST}(\alpha)$

 $\text{FIRST}(\alpha)$, otherwise

- Def: a grammar is LL(1) iff

 $A \rightarrow \alpha$ and $A \rightarrow \beta$ and

 $\text{FIRST}(A \rightarrow \alpha) \cap \text{FIRST}(A \rightarrow \beta) = \emptyset$
Parsing LL(1) grammar

- Given an LL(1) grammar
 - Code: simple, fast routine to recognize each production
 - Given \(A \rightarrow \beta_1 \mid \beta_2 \mid \beta_3 \), with:

 \[
 \text{FIRST}^*(\beta_i) \cap \text{FIRST}^*(\beta_j) = \emptyset \quad \text{for all} \quad i \not= j
 \]

\[
\ast \quad \text{find rule for} \ A \ast \]

if (current token \(\in \text{FIRST}(\beta_i) \))
else if (current token \(\in \text{FIRST}(\beta_j) \))
 select \(A \rightarrow \beta_i \)
else if (current token \(\in \text{FIRST}(\beta_j) \))
 select \(A \rightarrow \beta_j \)
else
 report an error and return false.

Algorithm

- For one production: \(p = A \rightarrow \beta \)

\[
\text{if} \ (\beta \text{ is a terminal } t) \]
\[
\text{FIRST}(p) = \{ t \}
\]
else if (\(\beta = \epsilon \))
\[
\text{FIRST}(p) = \{ \epsilon \}
\]
else (Given \(\beta = B_1 B_2 \ldots B_k \))
\[
\text{FIRST}(p) \leftarrow \text{FIRST}(B_i) - \{ \epsilon \}
\]
\[
\text{while} \ (z \in \text{FIRST}(B_i) \land i < k)
\]
\[
\text{FIRST}(p) \leftarrow \{ z \}
\]

FIRST and FOLLOW sets

FIRST(\(\alpha \))

- The right-hand side of a production

FIRST

For some \(\alpha \in (T \cup NT)^* \), define \(\text{FIRST}(\alpha) \) as the set of tokens that appear as the first symbol in some string that derives from \(\alpha \).

That is, \(x \in \text{FIRST}(\alpha) \) if \(\alpha \Rightarrow x \gamma \), for some \(\gamma \).

Note: may include \(\epsilon \)

FOLLOW(A)

For some \(A \in NT \), define \(\text{FOLLOW}(A) \) as the set of symbols that can occur immediately after \(A \) in a valid sentence.

\(\text{FOLLOW}(G) = \{ \text{EOF} \} \), where \(G \) is the start symbol.

Computing FIRST sets

Idea:

- Use \(\text{FIRST} \) sets of the right side of production

Cases:

- \(\text{FIRST}(A \rightarrow B) = \text{FIRST}(B) \)
 - What does \(\text{FIRST}(B) \) mean?
 - Union of \(\text{FIRST}(B_i) \) for all \(\gamma \)
 - What if \(\epsilon \) in \(\text{FIRST}(B) \)\?
 - \(\text{FIRST}(A \rightarrow B) \cup \text{FIRST}(B) \)
 - What if \(\epsilon \) in \(\text{FIRST}(B) \) for all \(\gamma \)\?
 - \(\text{FIRST}(A \rightarrow B) \cup = \{ \epsilon \} \)

Algorithm

- For one production:
 - Given \(A \rightarrow B_1 B_2 B_3 B_4 \)
 - Compute \(\text{FIRST}(A \rightarrow B) \) using \(\text{FIRST}(B) \)
 - How do we get \(\text{FIRST}(B) \)\?
 - What kind of algorithm does this suggest?
 - Recursive?
 - Like a depth-first search of the productions

Problem:

- What about recursion in the grammar?
 - \(A \rightarrow x \ B \ y \) and \(B \rightarrow z \ A \ w \)
Algorithm

- Solution
 - Start with FIRST(B) empty
 - Compute FIRST(A) using empty FIRST(B)
 - Now go back and compute FIRST(B)
 - What if it's no longer empty?
 - Then we recompute FIRST(A)
 - What if new FIRST(A) is different from old FIRST(A)?
 - Then we recompute FIRST(B) again...
- When do we stop?
 - When no more changes occur - we reach convergence
 - FIRST(A) and FIRST(B) both satisfy equations
- This is another fixpoint algorithm

Example

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>goal → expr</td>
</tr>
<tr>
<td>2</td>
<td>expr → term expr2</td>
</tr>
<tr>
<td>3</td>
<td>expr2 → + term expr2</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>term → factor term2</td>
</tr>
<tr>
<td>7</td>
<td>term2 → * factor term2</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>factor → number</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

FOLLOW(goal) = { EOF }
FOLLOW(expr) = FOLLOW(goal) = { EOF }
FOLLOW(expr2) = FOLLOW(expr) = { EOF }
FOLLOW(term) = ?
FOLLOW(term2) = FIRST(expr2)
 *= { +, - , * }
 / = { +, - , FOLLOW(expr) }
 += { +, - , EOF }
FOLLOW(number) = { +, - , * }
FOLLOW(identifier) = { +, - , * }

Algorithm

- Using fixpoints:
 - forall p FIRST(p) = {}
 while (FIRST sets are changing)
 pick a random p
 compute FIRST(p)

- Can we be smarter?
 - Yes, visit in special order
 - Reverse post-order depth first search
 - Visit all children (all right-hand sides) before visiting the left-hand side, whenever possible

Example

Computing FOLLOW sets

- Idea:
 Push FOLLOW sets down, use FIRST where needed
 \[A \rightarrow B_1 \mid B_2 \mid B_3 \mid B_4 \mid \ldots \mid B_n \]
- Cases:
 - What is FOLLOW(B_j)?
 - FOLLOW(B_j) = FIRST(B_j)
 - In general: FOLLOW(B_j) = FIRST(B_{j+1})
 - What about FOLLOW(B_j)?
 - FOLLOW(B_j) = FOLLOW(A)
 - What if \(\varepsilon \in \text{FIRST}(B_j)? \)
 - \(\Rightarrow \) FOLLOW(B_j) \(\cup \) FOLLOW(A) extends to \(k-2 \), etc.

Example

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>goal → expr</td>
</tr>
<tr>
<td>2</td>
<td>expr → term expr2</td>
</tr>
<tr>
<td>3</td>
<td>expr2 → + term expr2</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>term → factor term2</td>
</tr>
<tr>
<td>7</td>
<td>term2 → * factor term2</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>factor → number</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>goal → expr</td>
</tr>
<tr>
<td>2</td>
<td>expr → term expr2</td>
</tr>
<tr>
<td>3</td>
<td>expr2 → + term expr2</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>term → factor term2</td>
</tr>
<tr>
<td>7</td>
<td>term2 → * factor term2</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>factor → number</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>goal → expr</td>
</tr>
<tr>
<td>2</td>
<td>expr → term expr2</td>
</tr>
<tr>
<td>3</td>
<td>expr2 → + term expr2</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>term → factor term2</td>
</tr>
<tr>
<td>7</td>
<td>term2 → * factor term2</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>factor → number</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Example
Computing FOLLOW Sets

FOLLOW(A) = {EOF}
for each A ∈ NT, FOLLOW(A) = Ø
while (FOLLOW sets are still changing)
 for each p ∈ P, of the form A → α β...
 FOLLOW(β_k) = FOLLOW(β_k) ∪ FOLLOW(A)
 if ε ∈ FIRST(β_i) then
 FOLLOW(β_i-1) = FOLLOW(β_i-1) ∪ {FIRST(β_i) – {ε}} ∪ TRAILER
 else
 FOLLOW(β_i-1) = FOLLOW(β_i-1) ∪ FIRST(β_i)
 TRAILER = Ø

LL(1) property

Def: a grammar is LL(1) iff
A → α and A → β and
FIRST(A → α) ∩ FIRST(A → β) = Ø

Problem
What if my grammar is not LL(1)?
May be able to fix it, with transformations

Example:

Expression example

After left factoring:

Left factoring

Graphically

No basis for choice

Next word determines choice

Question
Using left factoring and left recursion elimination, can we turn an arbitrary CFG to a form where it meets the LL(1) condition?

Answer
Given a CFG that does not meet LL(1) condition, it is undecidable whether or not an LL(1) grammar exists

Example
(a^n b^n | n ≥ 1) ∪ (a^n b^m | n ≠ m) has no LL(1) grammar

aaa0bbb
aaa1bbbbbb
Limits of LL(1)

- No LL(1) grammar for this language:
 \(\{a^n b^n \mid n \geq 1 \} \cup \{a^n b^{2n} \mid n \geq 1 \} \) has no LL(1) grammar

Production rule

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(G \rightarrow aAb)</td>
</tr>
<tr>
<td>2</td>
<td>(G \rightarrow aBbb)</td>
</tr>
<tr>
<td>3</td>
<td>(A \rightarrow aA)</td>
</tr>
<tr>
<td>4</td>
<td>(A \rightarrow \epsilon)</td>
</tr>
<tr>
<td>5</td>
<td>(B \rightarrow aB)</td>
</tr>
<tr>
<td>6</td>
<td>(B \rightarrow \epsilon)</td>
</tr>
</tbody>
</table>

Problem: need an unbounded number of \(a \) characters before you can determine whether you are in the A group or the B group.

Predictive parsing

- **Predictive parsing**
 - The parser can "predict" the correct expansion
 - Using lookahead and FIRST and FOLLOW sets

Two kinds of predictive parsers

- Recursive descent
 - Often hand-written
- Table-driven
 - Generate tables from First and Follow sets

Recursive descent

- This produces a parser with six mutually recursive routines:
 - Goal
 - Expr
 - Expr2
 - Term
 - Term2
 - Factor

 - Each recognizes one NT or T
 - The term descent refers to the direction in which the parse tree is built.

Production rule

<table>
<thead>
<tr>
<th>#</th>
<th>Production rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{goal} \rightarrow \text{expr})</td>
</tr>
<tr>
<td>2</td>
<td>(\text{expr} \rightarrow \text{term} \text{expr2})</td>
</tr>
<tr>
<td>3</td>
<td>(\text{expr2} \rightarrow + \text{term} \text{expr2})</td>
</tr>
<tr>
<td>4</td>
<td>(\text{expr2} \rightarrow - \text{term} \text{expr2})</td>
</tr>
<tr>
<td>5</td>
<td>(\text{term} \rightarrow \text{factor} \text{term2})</td>
</tr>
<tr>
<td>6</td>
<td>(\text{term} \rightarrow \epsilon)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{term2} \rightarrow \text{factor} \text{term2})</td>
</tr>
<tr>
<td>8</td>
<td>(\text{term2} \rightarrow \epsilon)</td>
</tr>
<tr>
<td>9</td>
<td>(\text{factor} \rightarrow \text{number})</td>
</tr>
<tr>
<td>10</td>
<td>(\text{factor} \rightarrow \text{identifier})</td>
</tr>
<tr>
<td>11</td>
<td>(\text{factor} \rightarrow)</td>
</tr>
<tr>
<td>12</td>
<td>(\text{factor} \rightarrow \text{expr})</td>
</tr>
</tbody>
</table>

Example code

- **Goal symbol:**
  ```c
  main()
  /* Match goal --> expr */
  tok = nextToken();
  if (expr() && tok == EOF)
    then proceed to next step;
    else return false;
  
  expr()
  /* Match expr --> term expr2 */
  if (term() && expr2())
    return true;
  else return false;
  
  expr2()
  /* Match expr2 --> + term expr2 */
  /* Match expr2 --> - term expr2 */
  if (tok == '+' or tok == '-')
    tok = nextToken();
  if (term() && expr2())
    return true;
  else return false;
  
  /* Match expr2 --> empty */
  return true;
  
  factor()
  /* Match factor --> ( expr ) */
  /* Match factor --> id */
  if (tok == '(')
    tok = nextToken();
  if (expr() && tok == ')
    return true;
  else syntax error: expecting ;
    return false;
  
  /* Match factor --> num */
  if (tok is a num)
    return true;
  else return false;
  ```

Tufts University Computer Science
Top-down parsing

- So far:
 - Gives us a yes or no answer
 - Is that all we want?
 - We want to build the parse tree
 - How?
- Add actions to matching routines
 - Create a node for each production
 - How do we assemble the tree?

Building a parse tree

- Notice:
 - Recursive calls match the shape of the tree

- Idea: use a stack
 - Each routine:
 - Pops off the children it needs
 - Creates its own node
 - Pushes that node back on the stack

Building a parse tree

- With stack operations

```c
expr() {
  if (term() && expr2()) {
    expr2_node = pop();
    term_node = pop();
    expr_node = new exprNode(term_node, expr2_node);
    push(expr_node);
    return true;
  } else return false;
}
```

Generating a top-down parser

- Second piece
 - Keep track of progress
 - Like a depth-first search
 - Use a stack
- Idea:
 - Push Goal on stack
 - Pop stack:
 - Match terminal symbol, or
 - Apply NT mapping, push RHS on stack

Generating a top-down parser

<table>
<thead>
<tr>
<th>Production rule</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>goal -> expr</td>
<td>1</td>
</tr>
<tr>
<td>expr -> term expr2</td>
<td>2</td>
</tr>
<tr>
<td>expr2 -> term expr2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>factor term2</td>
</tr>
<tr>
<td></td>
<td>factor term2</td>
</tr>
<tr>
<td>term -> factor term2</td>
<td>6</td>
</tr>
<tr>
<td>term2 -> factor term2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>factor term2</td>
</tr>
<tr>
<td></td>
<td>factor term2</td>
</tr>
<tr>
<td>factor -> number</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>identifier</td>
</tr>
</tbody>
</table>

Table-driven approach

- Encode mapping in a table
 - Row for each non-terminal
 - Column for each terminal symbol
 - Table[NT, symbol] = rule# if symbol ∈ FIRST(NT -> rhs(#))

<table>
<thead>
<tr>
<th></th>
<th>/*</th>
<th>*/</th>
<th>id, num</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr2</td>
<td>error</td>
<td>error</td>
<td></td>
</tr>
<tr>
<td>term expr2</td>
<td>error</td>
<td>factor term2</td>
<td>error</td>
</tr>
<tr>
<td>factor term2</td>
<td>error</td>
<td>do nothing!</td>
<td></td>
</tr>
</tbody>
</table>
Next time

- Bottom-up parsers
 - Why?
 - More powerful
 - But, more complex algorithm (cannot write by hand)
 - Widely used – yacc, bison, JavaCUP

Left factoring

- Algorithm:

 ∀ A ∈ NT, find the longest prefix α that occurs in two or more right-hand sides of A

 if α ≠ ε then replace all of the A productions,
 \[A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_n \mid \gamma \]

 with

 \[A \rightarrow \alpha Z \mid \gamma \]

 \[Z \rightarrow \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n \]

 where Z is a new element of NT

 Repeat until no common prefixes remain

Code

push the start symbol, G, onto Stack

top ← top of Stack

loop forever

if top = EOF and token = EOF then break & report success

if top is a terminal then

 if top matches token then

 token ← next_token() // recognized top

 else

 push Bk, Bk-1, ..., B1 // in that order

 top ← top of Stack

else

 if TABLE[top, token] is A

 pop Stack // get rid of A

 push Bk, Bk-1, ..., B1 // in that order

 top ← top of Stack

Missing else’s for error conditions