HW 2: due Tuesday, February 20

1. A certain commodity is produced at two factories x_1 and x_2. The commodity is to be shipped to markets y_1, y_2 and y_3 through the network shown below. What is the maximum amount that can be shipped from the factories to the markets?

2. A vertex cover of a graph is a set of vertices C, such that every edge has at least one endpoint in C. Use network flows to prove the Kőnig-Egerváry theorem, i.e. if G is bipartite, then the size of the maximal matching is equal to the size of the minimum vertex cover.

3. The fault-tolerant version of the k-center problem with triangle inequality has an additional input $\alpha \leq k$ which specifies the number of centers that each vertex must be connected to. In other words, we assume that up to $\alpha - 1$ centers might be closed, and so the fault-tolerant cost for a vertex is its distance to its αth closest center. The problem is to pick k centers so that the maximum fault-tolerant cost of a vertex is minimized. A set $S \subseteq V$ in an undirected graph $H = (V,E)$ is an α-dominating set if each vertex $v \in V$ is adjacent to at least α vertices in
S (we consider a vertex to be adjacent to itself). Let $\text{dom}_\alpha(H)$ denote the size of a minimum cardinality α-dominating set in H.

(a) Let I be an independent set in H^2. Show that $\alpha|I| \leq \text{dom}_\alpha(H)$.

(b) Give a factor 3 approximation algorithm for the fault-tolerant k-center problem (Hint: Compute a maximal independent set M_i in G_i^2, for $1 \leq i \leq m$. Find the smallest index i such that $|M_i| \leq \left\lfloor \frac{k}{\alpha} \right\rfloor$, and moreover, the degree of each vertex of M_i in G_i is $\geq \alpha - 1$.)