HW 4: due Tuesday, April 24

1. Consider the problem of scheduling n identically-sized tasks on 2 machines, with a set of pre-requisites given by a partial order $<$. Give a polynomial time algorithm that finds the optimal length schedule.

2. Consider a bipartite graph $G = (U, V, E)$ on $2n$ vertices that contains a perfect matching. Suppose the vertices in U arrive in an online fashion and the edges incident to each vertex $u \in U$ are revealed when u arrives. When this happens, the algorithm may match u to a previously unmatched adjacent vertex in V, if there is one. Such a decision, once made is irrevocable. The objective is to maximize the size of the resulting matching.

 (a) Consider the algorithm that always matches a vertex in U if a match is possible. Show that this algorithm achieves a competitive ratio of $1/2$.

 (b) Consider the following randomized online matching algorithm: 1) Randomly rank all the vertices in V. 2) As each vertex in U arrives, match it with the highest rank vertex remaining to which it has an edge. Show that this algorithm does better in expectation than the deterministic algorithm above: you might want to read: Birnbaum, B. and Mathieu, C., 2008. On-line bipartite matching made simple. ACM SIGACT News, 39(1), pp.80-87.