Lecture 3a: The Traveling Salesman Problem

1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a challenge to the salesman who wants to visit every location exactly once and return home, as quickly as possible. Each location can be reached from every other location, and for each pair of locations, there is a measure that defines the cost (typically in distance or time, but could also be cost of the airline flight) of travelling directly between them.

Input: An complete undirected weighted graph $G = (V, E)$ with $|V| \geq 3$. Weights on edge $e = \{v_i, v_j\}$ are written as $w(e) = w_{i,j} = w_{j,i}$. All weights are positive.

Output: Consider all cycles C' where all vertices are visited exactly once.

$$C' = v_{\pi(0)}, v_{\pi(0)}, \ldots, v_{\pi(n-2)}, v_{\pi(n-1)}$$

$$i \neq j : v_{\pi(i)} \neq v_{\pi(j)}$$

The weight of these cycles $w(C')$ is the sum of the weight of the edges used to walk the cycle.

$$w(C') = \sum_{i=0}^{n-1} w_{\pi(i), \pi((i+1)\%n)}$$

The output is the cycle C together with its weight $w(C)$ where C is the cycle of minimum weight, OPT. Note that this cycle is not necessarily unique.

$$\forall C': OPT = w(C) \leq w(C')$$

The output can also be written as a tour T, or sequence of edges:

$$e_i = \{v_{\pi(i)}, v_{\pi(i+1)\%n}\}$$
Figure 1: Example input to the TSP

\[T = e_0, e_1, \ldots, e_{n-2}, e_{n-1} \]

\[w(T) = \sum_{i=0}^{n-1} w(e_i) \]

Complexity: This problem is NP-hard.

2 Metric TSP

In general, we can say nothing about the weights of edges in a given TSP graph except that they are positive. Metric TSP is an special case of the TSP that satisfies the triangle inequality. The triangle inequality ensures that a direct path between two vertices is at least as short as any indirect path. This is called the triangle inequality because no 1 side of a triangle can be longer than the sum of the other 2.

Definition 2.0.1 A complete graph satisfies the Triangle Inequality if \(\forall i, j, k : w_{i,k} \leq w_{i,j} + w_{j,k} \).
The example given in figure 1 satisfies the triangle inequality and therefore this is a case of Metric TSP. On the other hand, there are commonly occurring examples on non-metric TSP. If the weights represent something like the cost of airline tickets, for example, there is no reason to expect the input would satisfy the triangle inequality; it is often the case that taking an indirect route is less expensive than a direct route.

Complexity: Also NP-hard.

However, we can get close to the solution in polynomial time using approximation algorithms. In the following 2 sections we’ll see approximation algorithms that come within $2 \times OPT$ and $1.5 \times OPT$ for the metric TSP problem.

3 Approximation Algorithm 1

Goal: Given a metric TSP graph G, give a cycle C with $w(C) < 2 \times OPT$ in polynomial time, where OPT is the weight of the solution T to the metric TSP. This cycle must be a feasible solution to the metric TSP (i.e. it must visit each vertex of G exactly once).

3.1 Step 1: Minimum Spanning Tree

Our first step will be to create a minimum spanning tree (MST) for the graph G. This can be accomplished using algorithms such as Kruskal’s algorithm or Prim’s algorithm. Figure 2 shows the MST for the example input given in figure 1.

Definition 3.1.1 A Spanning Tree S of a graph H is a connected subgraph of H with no cycles and containing all vertices of H. The Minimum Spanning Tree is the tree S such that $w(S) \leq w(S')$ for all spanning trees S', where the weight of a spanning tree is the sum of the weights on its edges.

Claim 3.1.2 The weight of the MST M is less than OPT, the weight of the TSP solution T.

Proof:

- Take T and remove an edge e. T is now a spanning tree.
- Because M is the MST, $w(M) \leq w(T-e) = w(T)-w(e) = OPT-w(e)$
- $\forall e : w(e) > 0$
- Therefore, $w(M) < OPT$.

3.2 Step 2: Creating a Cycle

In order to do this, we start at the root, and traverse all the nodes in a depth first search: each edge is visited twice, once as we descend the tree, and once as we backtrack along a fully visited branch to reach the next unvisited node. Graphically, this means outlining the tree. An example cycle is given in figure 3. Using the first letter of the city names, this cycle is S,M,S,E,S,B,C,B,S,A,S.
Because each edge is used exactly twice during a depth first search on a tree (once descending, once ascending), \(w(W) = 2 \times w(M) < 2 \times OPT \). However, we cannot call this our solution, because we are visiting vertices multiple times.

3.3 Step 3: Removing Redundant Visits

In order to create a plausible solution for the TSP, we must visit vertices exactly once. Since we used an MST, we know that each vertex is visited at least once, so we need only remove duplicates in such a way that does not increase the weight.

Using the triangle inequality, we can create our solution cycle \(C \) by using vertices only the first time that they are seen. This is possible because the triangle inequality allows us to remove any intermediate vertices in a path and not increase the path weight.

The solution to this approximation algorithm is shown in figure 4. The cycle is S,M,E,B,C,A with weight 64.
4 Approximation Algorithm 2: Christofides’ Algorithm

Goal: Given a metric TSP graph G, give a cycle C with $w(C) \leq 1.5 \times OPT$ in polynomial time, where OPT is the weight of the solution T to the metric TSP. This cycle must be a feasible solution to the metric TSP (i.e. it must visit each vertex of G exactly once).

This algorithm is credit to N. Christofides [2]. In order to develop his algorithm, we need to establish 3 facts:

4.1 Fact 1: Vertices of Odd Degree

Any graph has an even number of vertices with odd degree.

Proof: For any undirected graph, the degree of a vertex is the number of edges incident to that vertex. Therefore, every edge contributes exactly 2 to the sum of degree of all vertices. We have sum of degrees of all vertices equal
sum of degrees of all vertices with odd degree and sum of degrees of all vertices
with even degree. Define $\text{odd} = \text{set of all vertices with odd degree}$ Define
$\text{even} = \text{set of all vertices with even degree}$ $2E = \sum_{v \in \text{odd}} d(v) + \sum_{v \in \text{even}} d(v)$
Because sum of degrees of vertices with even degree must be even, therefore
sum of degrees of vertices with odd degrees must be even as well. Therefore
the number of vertices with odd degree must be even. □

4.2 Fact 2: Eulerian Tour

Any connected graph whose vertices are all of even degree has an Eulerian
Tour.

Definition 4.2.1 A Eulerian Tour is a cyclic tour that uses every edge
exactly once.

We do not prove this here. The reader is referred instead to the textbook
for Math61. It is easy to see why the converse is true, i.e. that odd degree
vertices create problems, because every time you enter and exit a vertex along
new edges, that uses an even number of edges. To prove that this is the only
case where there are problems, involves an inductive argument that merges
a maximum tour so far with a new cycle.

4.3 Fact 3: Minimum Matchings in Polynomial Time

Given a complete weighted graph with an even number of vertices, a minimal
weight perfect matching can be found in polynomial time.

For the proof see Paths, Trees, and Flowers by Jack Edmonds [3]. The
proof goes beyond the scope of this class.

The running time of even bad implementations of Edmonds’ algorithm
is certainly bounded by $O(n^4)$ times a polylogarithmic factor. As you’ll see,
this dominates the running time of the other steps of Chrisofides algorithm,
resulting in Christofides algorithm also running in $O(n^4)$.
4.4 The Algorithm

Step 1: Create an MST T of the input graph G in the same manner as for approximation algorithm 1.

Step 2: Take G restricted to vertices of odd degree in T as the subgraph G^*. This graph has an even number of nodes due to Fact 1 and is complete because we have not removed any existing edges between the vertices that remain.

Step 3: Find a minimum weight matching M^* on G^*. This is possible in polynomial time due to Fact 2. See figure 5

Claim 4.4.1 $w(M^*) \leq .5 \times OPT$

Proof:

- The solution S^* to the TSP on G^* has weight at most OPT due to the triangle inequality. That is, removing vertices on a path cannot increase the weight of the path.
• Since $|V_G|$ is even, S^* can be divided into two alternating paths that are both matchings. The lighter of these two matchings M_1 has at most weight $0.5 \times w(S^*) \leq 0.5 \times OPT$.

• Since M^* is a minimum matching, $w(M^*) \leq w(M_1) \leq 0.5 \times OPT$

Step 4: Union the edges of M^* with those of the MST T to create a graph H with all vertices having even degree. This is a subgraph of G and has a most weight $w(T) + w(M^*) \leq 1.5 \times OPT$. See figure 6

Step 5: Create a Eulerian Tour on H and reduce it to a plausible solution C using the triangle inequality as described in approximation algorithm 1. See figure 7

5 Food for Thought

1. Is 1.5 a tight analysis of Christofides algorithm? Perhaps its worst case is actually better than 1.5 but we have failed to analyze it correctly.
Challenge: Find an example input for which Christofides algorithm will
generate a solution that is exactly 1.5 times optimal.

2. Is 1.5 the best that we can do in polynomial time without having to
prove P = NP? If a lower bound does exist, what is it?

6 Euclidean TSP

There is a special case of Metric TSP called Euclidean TSP. In Euclidean TSP, the weight of edges corresponds to ordinary (Euclidean) distances between their endpoints in the plane. Unfortunately, this problem is also NP-hard.

Vaidya has found an algorithm to find a minimum weight matching in Euclidean TSP that is $O(n^{2.5} \log^4(n))$ [4]. This causes the overall running time of Christofides algorithm to come down to the same asymptote in the case of Euclidean TSP.

Sanjeev Arora has found a Polynomial Time Approximation Scheme (PTAS)
for Euclidean TSP [1].

References

