MATCHING in a BIPARTITE GRAPH

ex: edges represent mutual consent

wiki: E represent men approved by women, & all men will take any woman who wants them!

Goal: maximize # independent edges

(like 1 round of greedy edge-coloring)
MATCHING in a BIPARTITE GRAPH

- If no incident edges, no hope.

- If \exists edge at u & it is not marked, then \exists x that is matched elsewhere.
 (otherwise match $x \leftrightarrow u$)

 So \exists y s.t. $x \leftrightarrow y$

 Which means all other edges at y are not selected, etc.
MATCHING in a BIPARTITE GRAPH

- if no incident edges, no hope
- if \exists edge at \(u \) \& it is not marked then \(\exists \ x \) that is matched elsewhere.
 (otherwise match \(x \leftrightarrow u \))

 so \(\exists \ y \) s.t. \(x \leftrightarrow y \)
 which means all other edges at \(y \) are not selected, etc
Is a matching optimal if no augmenting path exists?

Algorithm & time complexity to find an aug. path?
... or an optimal matching?

Augmenting path
All vertices of A matched → necessary & sufficient conditions?

\(\Rightarrow \) every vertex has a neighbor
\(\Rightarrow \) every group of \(S \) vertices in A has \(|S| \) neighbors.

Also sufficient: (Hall's theorem)

All vertices in A will be matched if for every \(S \subseteq A \)

\[|N(S)| \geq |S| \]
Start w/ best matching. Suppose $|N(S)| \geq |S|$ but a_o unmatched.
Start w/ best matching. Suppose $|N(S)| \geq |S|$ but a_o unmatched

$\exists b_i$ adjacent to a_o ($|N(a_o)| > 1$)
Start w/ best matching. Suppose $|N(S)| > |S|$ but a_o unmatched.

$\exists b_i$ adjacent to a_o ($|N(a_o)| > 1$)

b_i matches to some a_i.

(otherwise match a_o to b_i.)
Start w/ best matching. Suppose $|N(S)| \geq |S|$ but a_o unmatched

$\exists b_i$ adjacent to a_o \quad (|N(a_o)| > 1)$

b_i matches to some a_i \quad (otherwise match a_o to b_i)

Next, if \exists other vertex adjacent to a_o or a_i, label it b_2
Start w/ best matching. Suppose $|N(S)| > |S|$ but a_o unmatched

$\exists b_i$ adjacent to a_o ($|N(a_o)| > 1$)

b_i matches to some a_i

(otherwise match a_o to b_i)

Next, if \exists other vertex adjacent to a_o or a_i, label it b_2

and if b_2 matches to something, label it a_2
Start w/ best matching. Suppose $|N(S)| > |S|$ but a_0 unmatched

$\exists b_i$ adjacent to a_0 \quad (|N(a_0)| > 1)

b_i matches to some a_i,

(otherwise match a_0 to b_i)

Next, if \exists other vertex adjacent to a_0 or a_i

label it b_2

and if b_2 matches to something, label it a_2

While possible, extend this alternating sequence:

Add/label a_i if it matches to b_i

Add b_i if it is in $N(a_0, \ldots, a_i, \ldots)$
Start w/ best matching.

Suppose $|N(S)| > |S|$ but a_o unmatchable

$\exists b_i$ adjacent to a_o \hspace{1cm} (|N(a_o)| > 1)

b_i matches to some a_i,

(otherwise match a_o to b_i)

Next, if \exists other vertex adjacent to a_o or a_i

label it b_2

and if b_2 matches to something, label it a_2

While possible, extend this alternating sequence:

Add/label a_i if it matches to b_i

Add b_i if it is in $N(a_o...a_i...)$

$a_o b_i a_i b_2 a_2 ... b_k$

or

$a_o b_i a_i b_2 a_2 ... a_k$
Suppose $|N(S)| \geq |S|$ but a_o unmatched.

While possible, extend this alternating sequence:

- Add/label a_i if it matches to b_i.
- Add b_i if it is in $N(a_o \ldots a_{i-1})$.

Can this end in A at some a_k?

No because $|N(a_o \ldots a_k)| \geq k+1$ & we've only used $b_1 \ldots b_k$.

\exists some other $b \neq b_1 \ldots b_k$ in $N(a_o \ldots a_k)$.
Start w/ best matching.

Suppose $|N(S)| \geq |S|$ but a_o unmatched

- b_k doesn't match to any $a_o...a_{k-1}$
 - by definition
- b_k doesn't match to any $a \neq a_o...a_{k-1}$
 - because we could extend the sequence

$$b_k \rightarrow \text{some } a_i \ (i < k) \rightarrow b_i$$
$$\rightarrow \text{some } a_j \ (j < i) \rightarrow b_j \rightarrow \text{etc} \rightarrow a_o$$

$$a_o b_i a_i b_2 a_2 ... b_k \neq$$

AUGMENTING PATH

contradict