$K_n = (V, E)$: a network allowing efficient communication
... but it is expensive : $\binom{n}{2}$ edges
\[K_n = (V, E) : \] a network allowing efficient communication

... but it is expensive: \(\binom{n}{2} \) edges

Can we use a (less costly) subset \(G = (V, E') \) that still ensures reasonable communication?

Measuring

\[
\text{cost} \rightarrow \text{# edges} \\
\text{"reasonable"} \rightarrow (\text{max}) \text{ detour} \\
\text{over all pairs of vertices } a, b
\]
Does the MST give a good detour ratio? NO
T_{l_1}: keep any edge $\overline{a,b}$ iff a, b are on some empty "diamond".

Notice if then
\[T_{1_1} : \text{keep any edge } \overline{a,b} \text{ iff } \]

\[a,b \text{ are on some empty "diamond" } \]

Notice if

\[\begin{array}{c}
\text{square tilted } 45^\circ \\
\end{array} \]

then

\[\begin{array}{c}
\text{triangle } \\
\end{array} \]
T_{L_1}: keep any edge $\overline{a,b}$ iff a, b are on some empty "diamond"

Notice if \square then \triangle
T_{l_1}: keep any edge a,b iff a,b are on some empty "diamond".

Notice if a,b,c then
$T_{L_1}:$ keep any edge a, b iff a, b are on some empty "diamond".

Notice if...

\rightarrow square tilted 45°
T_{L_1}: keep any edge $\overline{a,b}$ iff a,b are on some empty "diamond".

Notice if \square then \triangle.

Square tilted 45°
T_{L_1}: keep any edge a,b iff

a,b are on some empty "diamond"

Notice if

Why T_{L_1}?

It's a "triangulation" sort of

is a unit circle in the L_1 metric
T_{l_1}: keep any edge $\overline{a,b}$ iff a,b are on some empty "diamond"

Assume "general position"

\Rightarrow no 4 points on an empty diamond (it is just a technicality)

T_{l_2}: Delaunay Triangulation based on regular empty circles
Can 2 edges cross in T_{L_2}? No

Suppose xy crosses vw

\exists empty circle \bigcirc through v, w

\exists \implies \implies \bigcirc \implies x, y.

Assuming general position (no 4 on a circle)

\bigcirc \bigcirc are distinct & must intersect exactly twice.

No way to place x, y, v, w. \[\square \]
Can 2 edges cross in $T_{1,1}$? **No**

Suppose \overline{xy} crosses \overline{vw}

\exists empty "circle" \bigcirc through v,w

$\exists \Rightarrow \Rightarrow \bigcirc \Rightarrow x,y$.

Assuming general position (no 4 on a \bigcirc)

$\bigcirc \bigcirc$ are distinct & must intersect exactly twice.

[Same for all convex pseudocircles]

No way to place x,y,v,w.
T_{l_1}: keep any edge $\overline{a,b}$ iff a,b are on some empty "diamond".

No edges cross: planar graph $\Rightarrow O(V)$ edges.
T_{11}: Not really a triangulation in the sense that all faces are triangles.

Can a bounded face not be a triangle? ... no

*suppose a,b,c consecutive on face, but no \overline{bc}. Then something is inside \Diamond w/ a,b,c on it. But this will contradict a,b,c in same face.
a, b, c form (empty) triangle because \(\exists \) empty circle on a, b, c

therefore center of circle is equidistant to a, b, c & further from other o

defines regions closest to o sites

Dual of **Voronoi Diagram**
The dual of a Voronoi diagram can be constructed by expanding empty "circles".
Dual of Voronoi Diagram
Dual of Voronoi Diagram
Dual of Voronoi Diagram
$T_{1/4}$: keep any edge $\overline{a,b}$ iff a,b are on some empty "diamond"

No edges cross: planar graph \(\leq O(n) \) edges.

Claim this gives a worst-case detour of $\sqrt{10}$. i.e. it is a "$\sqrt{10}$-spanner" (t-spanner with $t=\sqrt{10}$)

(result by Paul Chew ~1986)
Suppose 2 points u, w have same y-coord:

We will show that T_{L_1} is a $\sqrt{8}$-spanner for \overline{uw}.
Each edge in T_i contributes 2 circle graph edges.
Each edge in T_i contributes 2 circle graph edges.

In fact we will find an $\sqrt{8}$-approximation path in the Circle graph (using original edges clearly gives shortcuts).
We only need the subgraph of triangles that contain part of \(\overline{uw} \).
We only need the subgraph of triangles that contain part of uw
The path that approximates uw will only use edges of this subgraph.\[\text{in fact it will make steady progress, visiting triangles in order.}\]

Assume no vertex on uw otherwise recurse
Aside: will our subgraph look like this?

4 top chain (links between) bottom chain

Can we get this?

Actually yes, why not...

Is there any effect on the proof?
Aside: will our subgraph look like this?

A top chain (links between) bottom chain

this would imply that we don't visit all triangles that touch — but that's ok... we still progress steadily
Notice u belongs only to 1 triangle uab, with a above & b below uw. In fact u is on the \(\Box \) or \(\Diamond \) side of the empty diamond on uab. Start our path with $u\overrightarrow{ab}$ [along \(\Diamond \)] because u is on \(\Box \).
x belongs to many triangles. We care about the rightmost one.

current vertex x
x belongs to many triangles. We care about the rightmost one.

Again we have the property that the current vertex \(x \) on our path is in a triangle \(xab \), w/ a above & b below \(uw \).
As before, if x is on \square move \nearrow

else if x is on \diamond move \nearrow

else if x is on \triangledown move \nearrow

if x is above (below) $u\bar{w}$ move \nearrow
if you start at a point, we have established direction.
when moving above \overline{uw}

Starting from below and ending up above:

Notice that b must be below \overline{uw} if x is on \square or \square.
when moving above \overline{uw}

\{ 1. never go
2. go \rightarrow iff on \square

\}

when moving below \overline{uw} //symmetric
while above...

(why can't we switch from \checkmark to \rightarrow?)

would involve placement of \[\square \] s.t. the corresponding triangles inside would not overlap — in proper order.
while above...

(why can't we switch from \leftarrow to \rightarrow?)

unfold
while above...

(why can't we switch from \checkmark to \rightarrow?)

technical & brushed over $x_1 < x_2$

unfold

extend
In fact we travel on not on so the bound is better.
Dealing with \mathbf{w} is mostly skipped but claimed to give $\sqrt{10}$

Computation: Delaunay triangulation (L_1 or L_2) : $\Theta(n \log n)$
Journal version contains improvement: 2-spanner (from $\sqrt{10}$)

use as distance

would use this to "grow" Voronoi diagram

however an empty circle is inverted // 3 points at same distance from center

All that matters is that we form a graph using

center of circle reached simultaneously from Voronoi "seeds"
Rules are similar

\[\text{this might make many of the proofs easier} \]

Resulting shape is even simpler

worst case ratio: \(\sqrt{3} \)
(for \(uw \) horizontal)
...becomes 2 when tilted
Euclidean $= 3 + \varepsilon$

Detour ≈ 6

\[
\begin{align*}
\text{upper bound is tight}
\end{align*}
\]

Simple lower bound of $\sqrt{2}$ for any planar spanner

\[\text{(recent update)}\]

Bose et al.

perturbed co-circular points: can choose any Delaunay triangulation

\[\text{Ratio} \geq \frac{\pi}{2}\]

& known $\leq \frac{2\pi}{3\cos\frac{\pi}{6}} \approx 2.42$