CHAIN SIMPLIFICATION: "ITERATIVE ENDPOINTS FIT"

input:
① a chain
② an error tolerance
③ a distance definition (between points & segments)

Algorithm:
\[\text{simplify}(a,b) \quad \text{// chain from } a \text{ to } b\]
\[\text{if } \overline{ab} \text{ doesn't approximate chain}(a,b) \text{ "well" }\]
\[\text{find } v \in \text{chain}(a,b) \text{ w/ MAX dist}(v,\overline{ab})\]
\[\text{simplify}(a,v)\]
\[\text{simplify}(v,b)\]
\[\text{else output } \overline{ab}\]
CHAIN SIMPLIFICATION: "ITERATIVE ENDPOINTS FIT"

- Time complexity
 - Testing \overline{ab}: linear time (size of chain)
 - Worst case: unbalanced recursion

$\mathcal{O}(n^2)$

Algorithm:

simplify(a, b) // chain from a to b
if \overline{ab} doesn't approximate chain(a, b) "well"
 find $v \in$ chain(a, b) with $\text{MAX dist}(v, \overline{ab})$
 simplify(a, v)
 simplify(v, b)
else output \overline{ab}
do we always get a simple (non-crossing) chain?

vertex too far from red edge
do we always get a simple (non-crossing) chain?

within error tolerance

(ok maybe the threshold should be a bit greater)
do we always get a simple (non-crossing) chain?
do we always get a simple (non-crossing) chain?

both vertices within tolerance
do we always get a simple (non-crossing) chain? \[\text{No}\]

variants (possibly unexplored)

- require non-crossing output
- deal with multiple error violations

\[\text{use median "offender"?}\]

\[\gg 2\text{ recursive calls?}\]
Does the algorithm minimize the number of segments used?

No. can be made arbitrarily worse.
IRI-IMAI algorithm to minimize segments (given path & tolerance)

- form directed graph:
 \[\overrightarrow{v_i v_j} \iff i < j \]

- give a score to each edge:
 \[\#	ext{path edges skipped} \]

- keep only edges satisfying tolerance
IRI-IMAI algorithm to minimize segments (given path & tolerance)

1. Form directed graph:
 - make $\overrightarrow{v_i v_j}$ iff $i < j$

2. Give a score to each edge:
 - #path edges skipped

3. Keep only edges satisfying tolerance

$$\Theta(V^2) \text{ edges } \underbrace{1}_{2} \underbrace{\Theta(V^2)}_{3} \underbrace{\Theta(V^2) \cdot O(v)}_{\text{time complexity}}$$
IRI-IMAI algorithm to minimize segments (given path & tolerance)

1. Form directed graph:
 - make $\overrightarrow{v_i v_j}$ iff $i < j$

2. Give a score to each edge:
 - # path edges skipped

3. Keep only edges satisfying tolerance

$\Theta(V^2)$ edges $\leq \frac{1}{2} \Theta(V^2)$ $\gg \frac{3}{3} \Theta(V^2) \cdot O(V)$

- max-weight path in a DAG
 - min-weight w/ scores inverted
 (no neg. cycles: ok)
 $O(E)$

- Simple (unweighted) BFS
IRI-IMAI algorithm to minimize segments

Suppose we are willing to use up to \(k \) edges. Then the goal is to minimize error.
IRI-IMAI algorithm to minimize segments

Suppose we are willing to use up to \(k \) edges. Then the goal is to minimize error.

- Build the full DAG \(\Theta(V^2) \)
- Sort all edges by error \(\Theta(V^2 \log V) \)
- Binary search on error \(\log(V^2) \)

For each error value:
- Trim graph \(\Theta(V^3) \)
- Test \(O(E) \)

Total time \(\mathcal{O}(V^3 \cdot \log V) \) + a dynamic programming approach to be written up.
IRI-IMAI algorithm to minimize segments (given path & tolerance)

Testing an edge that connects endpoints of a path w/ m segments

\[\Rightarrow \text{brute force: } \Theta(m) \text{ time} \]

\[\Rightarrow \text{under certain conditions (e.g. parallel strip distance) } \]
\[\& w/ \text{preprocessing, we can do better} \]
(\text{and thus beat } O(V^3) \text{ overall})