This homework is due Thursday, February 13th at the beginning of class.

Problem 1. Prove that every perfect matching is a minimum edge cover.

Problem 2. Prove that for any graph $G = (V, E)$ with maximum matching $E' \subseteq E$, there exists a minimum edge cover E'' with $E' \subseteq E''$ and $|E''| - |E'| = |V| - 2|E'|$. That is, every maximum matching can be extended into a minimum edge cover by adding one edge per vertex.

Theorem 1. The 3-regular vertex cover problem is NP-hard.

Problem 3. Prove that the 3-uniform hypergraph edge cover problem is NP-hard (hint: use Theorem 1).