
COMP 40 Assignment: Interfaces, Implementations, and
Images

Interfaces and design checklists for parts A and B Tuesday, September 20 at 11:59PM. Full assignment (all of parts A, B,

C, D, and E) due Sunday, September 25 at 11:59PM.

Please read the entire assignment before starting work.

Purpose

This assignment has four goals:

To spur you to think more deeply about programming technique1.

To give you practice designing your own interfaces, not just using interfaces designed by other people2.

To give you practice thinking about what familiar algorithms and data structures you can use to solve new problems3.

To lay a foundation for future assignments. In these future assignments,

You will learn about locality, its effects on performance, and how to change the locality of a program.♦

You will understand how data structures in a high-level language map to machine structures, and how to

improve space performance by programming directly with machine structures.

♦

You will learn to improve the performance of programs by code tuning♦

4.

The abstractions you build in this assignment will help you represent and manipulate digital images.

Preliminaries

In Hanson's C interfaces and implementations, refresh your memory about exceptions (Section 4.1) and memory

management (Section 5.1). Study the Bit abstraction defined in Chapter 13 and the UArray abstraction defined in

the supplemental chapter.

•

Part A: Two-Dimensional, Polymorphic, Unboxed Arrays

In the supplement to Hanson, Dave Hanson and I provide an abstraction that implements unboxed one-dimensional arrays.

For this part of the assignment, you'll adapt the unboxed-array abstraction to support two-dimensional arrays. Your adaptation

will be called UArray2 and should define the type UArray2_T. Your adaptation should include the following changes:

Instead of a length, an UArray2_T will have a width and a height.•

Instead of being identified by a single index, an element of an UArray2_T will be identified by two indices: the

column or x index measures the distance between the element and the left edge of the array, while the row or y index

measures the distance between the element and the top row of the array. Thus the top left element is always indexed

by the pair (0,0).

•

Omit the resize and copy operations.•

You must define two analogs of the Bit_map function described on page 201:

UArray2_map_row_major calls an apply function for each element in the array. Column indices

vary more rapidly than row indices.

♦

UArray2_map_col_major calls an apply function for each element in the array. Row indices vary

more rapidly than column indices.

♦

The terms ``row major'' and ``column major'' may be found in Bryant and O'Halloran as well as on Wikipedia.

•

As in Hanson's code, a reference out of bounds should result in a checked run-time error.

For part A, the problem you are to solve is define an interface and build an implementation for UArray2.

My solution to this problem takes about 100 lines of C code.

COMP40 Assignment: Interfaces, Implementations, and Images

COMP 40 Assignment: Interfaces, Implementations, and Images 1

Hints:

The key to this problem is to set up an implementation in which the elements of your two-dimensional array are in

one-to-one correspondence with elements of one or more one-dimensional UArray_Ts. The key question to answer

is

How do you relate each element in a two-dimensional array to a corresponding element in some

one-dimensional array?

If you have a precise answer to this question, the code is pretty easy to get right. If not, it's easy to get lost chasing

pointers.

•

Don't worry about performance; aim for simplicity.

If you feel compelled to worry about performance, you may make simple code improvements provided you justify

them. Don't try anything radical; premature optimization is the root of much evil.

•

Think carefully about what should be the prototype for the apply function passed to

UArray2_map_col_major and UArray2_map_row_major.

•

The pixels in a portable gray map are stored in row-major order, so one way to test your UArray2 mapping

functions is to write a simple program that reads and writes a graymap by calling UArray2_map_row_major

with a function argument that calls Pnmrdr_get from the Pnmrdr interface. If you compare results with

diff -bu you should be able to get the same output as pnmtoplainpnm.

If you read with UArray2_map_col_major and write with UArray2_map_row_major, you should be able

to duplicate the effect of pnmflip -transpose.

•

Unpleasantness to watch out for:

When working with void * pointers, it's easy to get confused about the correct number of levels of indirection.

Draw diagrams.

•

If you assign the result of UArray_at(a, i) to a pointer p, it must be the case that

 sizeof(*p) == UArray_size(a)

Violating this specification results in an unchecked run-time error. Sometimes, but not always, you can catch such

errors using valgrind's default "memcheck tool". It's therefore good to check this property with an assertion, e.g.,

 element *p = UArray_at(a, i);

 assert(sizeof(*p) == UArray_size(a));

 *p = f();

•

Your life will be much easier if you follow the programming idioms for storing values into Hanson's arrays, which deal with

most of these issues.

Part B: Two-Dimensional Arrays of Bits

In some cases, particularly for documents scanned at high resolution, it can be useful to represent an image as an array of

bits. Each bit is either black (1) or white (0). To save space, it is useful to have a packed representation of such images. For

this part of the lab, you'll design Bit2: an interface to support two-dimensional arrays of bits.

Hints:

Your interface should be very, very similar to your UArray2 interface, with one possible exception: because it is

not possible to create a pointer to a single bit, you cannot use the at idea; your only option is an interface like the

Bit interface, which exports put and get.

•

Your interface should include row-major and column-major mapping operations.•

Your interface should not contain anything analogous to the set operations in Chapter 13. These operations are quite

useful when considering a one-dimensional bit vector as a set, but it is rare to require set operations over integer

pairs. Indeed, the most useful transformations and computations over two-dimensional bitmaps involve an operator

•

COMP40 Assignment: Interfaces, Implementations, and Images

Part A: Two-Dimensional, Polymorphic, Unboxed Arrays 2

called ``bit blit.'' Google and Wikipedia are not good sources for this operator, but if you are curious you will find a

marvellous collection of simple transformations in a classic article by Guibas and Stolfi. There is no need to

implement any of these transformations.

For part B, the problem you are to solve is define an interface and build an implementation for Bit2.

My solution to this problem takes about 110 lines of C code.

Part C: Using the UArray2 abstraction to identify Sudoku solutions

Write the test program sudoku. It takes as input a single portable graymap file, which may be named on the command line

or may be given on standard input. Your program must not print anything, but if the graymap file represents a solved

sudoku puzzle, your program should call exit(0); otherwise it should call exit(1). A solved sudoku puzzle is a nine-by-nine

graymap with these properties:

The maximum pixel intensity (aka the denominator for scaled integers) is nine.•

No pixel has zero intensity.•

In each row, no two pixels have the same intensity.•

In each column, no two pixels have the same intensity.•

If the nine-by-nine graymap is divided into nine three-by-three submaps (like a tic-tac-toe board), in each

three-by-three submap, no two pixels have the same intensity.

•

Here's an example (which you can also view as an image):

P2

9 9

portable graymap representing a sudoku solution

9

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 9 1

5 6 7 8 9 1 2 3 4

8 9 1 2 3 4 5 6 7

3 4 5 6 7 8 9 1 2

6 7 8 9 1 2 3 4 5

9 1 2 3 4 5 6 7 8

My solution to this problem takes about 120 lines of C code. There is a significant opportunity for abstraction; a Very Good

solution will identify such opportunities and use them to avoid repeating code.

If sudoku is used in a way that violates its specification, it should terminate with a checked run-time error (any one will do).

Read the specification carefully!

Part D: Using the Bit2 abstraction to remove black edges

Write the test program unblackedges, which removes black edges from a scanned image. Example:

===========>

COMP40 Assignment: Interfaces, Implementations, and Images

Part B: Two-Dimensional Arrays of Bits 3

Before After

The program unblackedges takes at most one argument:

If an argument is given, it should be the name of a portable bitmap file (in pbm format).•

If no argument is given, unblackedges reads from standard input, which should contain a portable bitmap.•

If more than one argument is given, unblackedges halts with an error message.•

If a portable bitmap is promised but not delivered, unblackedges should halt with some sort of error message on

stderr.

•

Program unblackedges should print, on standard output, a portable bitmap file which is identical to the original file

except that all black edge pixels should changed to white. You can find some sample images in

/comp/40/images/bitonal; try, for example,

 pngtopnm /comp/40/images/bitonal/hyphen.png | ./unblackedges | display -

For a bitmap of size w by h, a black edge pixel is defined inductively as follows:

A pixel is a black edge pixel if it is black and if it appears in column 0, in row 0, in column w-1, or in row h-1.•

A pixel that appears in column i, row j is a black edge pixel if it is black, if i>0 and i<w-1, if j>0 and j<h-1, and any

neighboring pixel is a black edge pixel.

•

The neighboring pixels of the pixel in column i, row j are

The pixel in column i-1, row j♦

The pixel in column i+1, row j♦

The pixel in column i, row j-1♦

The pixel in column i, row j+1♦

•

My solution to this problem takes about 110 lines of C code for the main problem, plus about 40 lines of code that I can reuse

for other problems. John Dias suggested an even simpler solution that requires less than 70 lines of code for the main part,

and John's solution runs 30% faster than mine.

Hints:

COMP40 Assignment: Interfaces, Implementations, and Images

Part D: Using the Bit2 abstraction to remove black edges 4

Like the one-dimensional array, a 2-dimensional array can wear multiple hats in the world of ideas–that is, it can

represent multiple abstractions. Besides the obvious, what other data structure is lurking within this problem? (The

key data structure is suggested not by the mere fact of having a two-dimensional array, but by what we are asking

you to do with it.)

•

What algorithms have you seen that might be relevant?•

What data structure might you use to represent the set of black edge pixels in row i?•

You may find it useful to define auxiliary functions with these prototypes:

 Bit2_T pbmread(const char *path);

 void pbmwrite(FILE *fp, Bit2_T bitmap);

You can write or write pixels using an explicit loop or a row-major mapping function.

To learn the correct output format for a PBM file, run

 man 5 pbm

and look for the "plain" format described at the bottom of the page.

•

There is at least one opportunity to exploit one of your map functions.•

If you find yourself in difficulty, try writing a simpler program that merely inverts the image in a bitmap (change

white to black and vice versa).

•

If unblackedges is used in a way that violates its specification, it should terminate with a checked run-time error (any one

will do).

Part E: Programming technique

Meet with your partner and identify one programming technique that meets either of these two criteria:

One of you has incorporated it into your programming practice since January.•

One of you would like to incorporate it into your programming practice by the end of this term.•

Your assignment is to describe the technique in enough detail that a student halfway through COMP 15 could put it

into practice. Use at most one page.

You should submit your description in a plain text file called TECHNIQUE, or if you prefer to use a word processor, a PDF

file called technique.pdf.

Expectations for your solutions

Your course instructor has thought of several ways to solve parts A and B. Representation is the essence of programming!

Your major design decision will be how to represent a UArray2_T and a Bit2_T. Several obvious alternatives, all of

which acceptable, are

To represent a UArray2_T as an array of UArray_T's.•

To represent a UArray2_T as a single UArray_T.•

To represent a Bit2_T as an array of Bit_T's.•

To represent a Bit2_T as a single Bit_T.•

What is not acceptable is to clone and modify Hanson's implementation. Your new code should be a client of Hanson's

existing code, and you should rely on Hanson to do the heavy lifting. Reuse his code as much as possible.

Another significant design decision is the type (prototype) of the apply function you'll use in your row-major and

column-major traversals.

COMP40 Assignment: Interfaces, Implementations, and Images

Part E: Programming technique 5

If you're concerned about performance, don't worry—we'll make a careful study of it throughout the term,

and you'll have a chance to revisit and improve your implementation.

Common mistakes

Avoid these common mistakes:

The indices into a two-dimensional array, whether they are called ``x and y'' or ``i and j'' or ``n and m'' or ``row and

column,'' are always both integers. The only way to distinguish them is which one appears first. A common mistake

is to use different orders in different parts of your code. Choose one order or the other and put it first consistently in

all your code.

•

As in the previous assignment, don't forget to initialize each C pointer variable. (For a review of programming

with pointers, we recommend Pointer Fun with Binky.)

•

When getting a value from UArray_at or a UArray2_T ``at'' function, assign the value to a pointer of a suitable

type. Then read or write the element by dereferencing the pointer. When the element is itself a pointer, it is easy to

mistake the address of the pointer for the pointer itself. This mistake leads to valgrind errors and core dumps. Look

at the C programming idioms.

•

Organizing and submitting your solutions

On Tuesday, submit two interfaces and a DESIGN file which describes your design:

uarray2.h

bit2.h

DESIGN

If you prefer to use a word processor you can submit design.pdf instead of DESIGN. Please make sure that any

file called design.pdf is actually a PDF file.

Your DESIGN file should contain two design checklists, one for each abstraction. We are especially interested in

items 1, 2, and 4 from the checklist. If you are confident of your design, you can scant the other items—but if you

run into difficulty, we will ask you to complete the full checklist before asking for help.

To submit your design, change to the directory that contains these files and run the submit40-iii-design

command. For this to work, you will have had to run use comp40 either by hand or in your .cshrc or your

.profile.

•

In your final submission on the following Sunday, don't forget to include a README file which

Identifies you and your programming partner by name♦

Acknowledges help you may have received from or collaborative work you may have undertaken with

classmates, programming partners, course staff, or others (ask me sometime about Otis the debugging dog)

♦

Identifies what has been correctly implemented and what has not♦

Contains the critical parts of your design checklists♦

Says approximately how many hours you have spent completing the assignment♦

•

Your submission should include at least these files:

README

compile

uarray2.h

uarray2.c

bit2.h

bit2.c

sudoku.c

unblackedges.c

TECHNIQUE (or technique.pdf)

•

When you get everything working, cd into the directory you are submitting and type submit40-iii to submit

your work.

•

COMP40 Assignment: Interfaces, Implementations, and Images

Expectations for your solutions 6

