
COMP 40 Laboratory: Getting started with C and Interfaces
with bonus technique

Make it compile; make it run; make it right

September 9, 2011

For this lab, you will want:

1. The course handoutHow to Write Compile Scripts

2. A copy of the first homework assignment

3. A C reference, either online or in a book

4. A copy of thePnmrdr interface, which goes with the first assignment (either online or printed out)

5. Access to the pnm documentation (tryman pgm)

6. Access to the course web page on idioms for C programmers

The goal of the lab is to get you started with the new material you will need to learn to complete the homework.1

We expect that most students will be able to finish the first part of the homework during the 75-minute lab.

Plan of the lab

The key to successful implementation is toget an end-to-end solution working as quickly as possible. You want a
program that doessomething which you can work with and then improve. Programming is easier and more fun when
your code always does something. The plan of the lab is therefore to get you set up and compiling right away, then
move toward a workingbrightness program one step at a time. The slogan is

Make it compile; make it run; make it right

Steps towardbrightness

1. Find your assigned programming partner, introduce yourself, and grab a computer. If you can’t find your partner
or your partner isn’t in the lab, please consult the lab staff.

2. Usegit to create a directory for the assignment, which will containthe compile script that is also linked from
the web page for the first homework assignment. Running

git clone linux.cs.tufts.edu:/comp/40/git/intro

should create anintro directory containing the scriptcompile. If you have trouble, you can try instead

git clone /comp/40/git/intro

1Because it’s the first lab, we’ve prepared an elaborate handout. Most labs will have shorter handouts.

1



which will work in the lab, but not at home. (And you might ask the course staff for help with your login shell.)

During lab we will be working only on thebrightness program, so you will use

./compile -link brightness

which will link only that program.

3. Write the simplest program that does something likebrightness. In this case, we suggest that you write a
program which processes the command-line arguments. If your program is supposed to open a file, open it;
if fopen() fails, issue a suitable error message.The idioms for C programmers will help.

Instead of doing anything with a file you open, simply print a message saying that you got a file but did nothing.

4. You should now be able to compile and link your first versionof brightness. Run

sh compile -link brightness

5. We should check for memory errors, but nobody can resist running a brand-new program. Here are some
commands to try:

./brightness < /dev/null

./brightness brightness

./brightness < brightness

./brightness one two three

If anything nasty happens, proceed to the next step and run with valgrind.

6. Now check for memory errors and leaks usingvalgrind:

valgrind ./brightness < /dev/null

valgrind ./brightness brightness

valgrind ./brightness < brightness

valgrind ./brightness one two three

If you get a leak, maybe your forgot to close a file after opening it? If you get a message you don’t understand,
ask one of the course staff helping out at lab.

7. Your next step is to stop and think about the problem. You’ll think aboutthe work of the program andthe names
of the functions that will do that work. We expect you to choose good names for functions, and your choices
affect your grades. This part of the lab will give you practice in avery simple setting, and you can ask the lab
TAs to check your work.

(a) Get the lab form by running

git clone linux.cs.tufts.edu:/comp/40/git/intro-lab

(If your shell is broken, you may need to clone just/comp/40/git/intro-lab.)

(b) Complete the exercise that you find there: identify threepotential functions and three possible names for
each one.

(c) If you like, check with a member of the lab staff.

(d) Submit your work by runningsubmit40-lab-intro.

8. Now you can start making your nascentbrightness program actually do some work. Learn how to use the
Pnmrdr interface to read some portable graymap files.This step is going to take some time and thought. You
have to take time to understand the interface. You’ll be thinking about interfaces a lot in 40, so if you’re not
confident, now is a good time to ask the lab staff for explanations.

Once you have an idea how the interface is supposed to work, once again start by writing something really
simple—use the interface to read the file’s header, thenget exactly the right number of pixels. Don’t try to
compute brightness; just print a message indicating how many pixels you’ve gotten.

2



9. Recompile. Try running

sh -x compile -link brightness

and be sure you understand what eachgcc command is doing—in the future, you’ll write your owncompile
scripts. If you have questions about the compile script, askthe lab staff.

10. Try out your new code with actual graymaps in/comp/40/images:

djpeg -grayscale /comp/40/images/erosion.jpg | ./brightness

djpeg -grayscale /comp/40/images/halligan.jpg | ./brightness

If you want to see what the grayscale images look like, try piping to a viewing program, e.g.,

djpeg -grayscale /comp/40/images/erosion.jpg | display -

djpeg -grayscale /comp/40/images/halligan.jpg | display -

11. Once again, run withvalgrind to be sure you have no leaks or errors:

djpeg -grayscale /comp/40/images/erosion.jpg | valgrind ./brightness

djpeg -grayscale /comp/40/images/halligan.jpg | valgrind ./brightness

12. Your penultimate step is to write a function to compute and print average brightness. If you’ve done things right,
your main function won’t change, except possibly at one call site. If you haven’t done thingsright, now is the
time to fix yourmain function. (Our goal isseparation of concerns: main’s job is to validate the command-line
arguments and come up with an open file handle; doing something with that file is a job that should be delegated
to some other function.)

Writing brightness is pretty easy; less easy is figuring outhow you are going to test it. Hint: the man page
for pgm has a sample portable graymap. Can you use a text editor to create apgm file whose average brightness
is known?

13. Your ultimate step is to check your work again by running undervalgrind.

Programming technique

Successful C programmers use these techniques without evenhaving to think about them. Make them habits!

• Compile early and often. Insanely often.

• Run frequently (but don’t lose your sanity).

• The moment your code appears not to be working, usevalgrind.

• If your code appears to be working, usevalgrind!

If you finish the lab early

Please use your extra time constructively bydeliberately introducing leaks and errors into your code. This exercise
will help you understandvalgrind and what it can do for you.

• Try forgetting to free the PNM reader when you are done with it.

• Try using a variable without initializing it.

• Try callingfree instead ofPnmrdr_free on a PNM reader.

• Try callingfree instead ofPnmrdr_free on a PNM reader, and then keep on using the PNM reader.

Each of these exercises will help you learn to understand messages fromvalgrind and how they correlate with typical
programming errors. When you start tackling harder problems, this experience will be invaluable.

3


