
COMP 40 Laboratory: Problem-Solving and Black Edges

September 23, 2011

(Digression on compiling: If you don’t already have a compile script for this assignment, please copy your previous
compile script and edit the twocase statements that begin “case $link in”.)

In this lab, please work with your programming partner. The staff are on hand primarily to answer your questions;
raise hands early and often.

NOTE: As part of the lab, you willsubmit three test cases.

Understanding the problem

The problem is to “fix” a scanned image by removingblack edge pixels. What is a black edge pixel? Your homework
gives a precise inductive definition.

1. Think of example inputs.

Begin with

• Inputs that are as simple as possible (e.g., all-black image)

• Other simple inputs (please come up with your own examples)

• Pathological inputs (e.g., the scanner malfunctions and puts a black bar all the way across a scanned
input—please think of additional examples)

• Expected inputs

Please think of several examples, andwrite down what you think should happen. This information will find its
way into a design checklist.

2. Do the problem by hand for simple inputs.

In addition to very simple inputs you think of, do some small random inputs. You can view or print such an
input using the shell script in Figure 1:

random-bitmap | pnmscale 40 | display - # view

random-bitmap | pnmscale 50 | pnmtops | lpr -Php118 # print

random-bitmap | pnmtoplainpnm # view ASCII

(The script is installed in the/comp/40/bin directory and should be made visible byuse comp40.)

Not all bitmaps are square:

random-bitmap 16 9 | pnmscale 40 | display -

1

#!/bin/bash

function usage {

echo "Usage: $(basename $0) [width [height [percent-black]]]" 1>&2

exit 1

}

case $# in

0|1|2|3) ;; # OK; do nothing

*) usage ;;

esac

case $1,$2,$3 in

-) usage ;;

esac

w="$1" # width

h="$2" # height

p="$3" # percent black

use defaults for values not given on the command line

[-z "$w"] && w=10 # default width is 10

[-z "$h"] && h="$w" # default height makes a square bitmap

[-z "$p"] && p=50 # default bitmap is 50% black

emit pbm(5) in the "plain" format

echo "P1"

echo "# random bitmap generated by: $(basename $0) $w $h $p"

echo "$w $h"

for ((i=0; i<w; i++)); do

for ((j=0; j<h; j++)); do

n=$(($RANDOM % 100))

echo $((n < p))

done

done

Figure 1: Shell script for generating random bitmaps

3. Construct and submit test cases.

Before the lab is over, please use thesubmit40-lab-unblack program to submit three test cases and their
solutions. We expect these files:

test1.pbm answer1.pbm

test2.pbm answer2.pbm

test3.pbm answer3.pbm

Be sure you check these files withdisplay to make sure they are formatted correctly!

If you like, you may also include a fileTESTS describing your tests.

• An easy way to create a test case by hand is to usepnmtoplainpnm on a random bitmap, then edit the
results in a text editor. You can display edited bitmaps using pnmscale anddisplay.

• If you are not sure your test cases are right, ask a member of the course staff.

• Your test cases will be used to evaluate your solutions as well as everyone else’s solutions.

• If you develop a test case that exposes a fault in someone else’s program, we will be impressed. Feel free
to make your test cases as challenging as you like.

2

Stepwise refinement

4. Can the problem be broken down into a sequence of simpler steps?

For the problem of the black edge pixels, I know two (very similar) solutions that involve breaking the problem
into two steps.1 (It’s possible that you may have already broken the problem into steps mentally, so much so
that you can’t see the steps. If so, call for a member of the course staff.)

Identifying data in the problem

5. What data do you see in the problem? Do different data structures go with different steps?

In this problem, understanding the data in the problem may bethe most difficult part.

Here are a couple of tricks:

• List the key words in the problem statement

Do these words suggest any additional data structures? Any algorithms?

• Would it be helpful to put any of the key items into set? A sequence? A finite map?

For example, the problem repeatedly mentions pixels. Probably there are one or more useful data structures
involving pixels.

Revisit your examples, algorithmically

6. Play computer.

Revisit your work from step 2. Can you identify analgorithm for working these examples? Try to “play
computer” and see if your algorithmic ideas work on the examples.

7. Identify invariant properties.

Algorithms and data structures

8. What algorithms will you use to help solve the problem?

9. What abstractions (black boxes) could help you solve the problem?

Architecture of your solution

The word for “how black boxes and functions work together to solve a problem” is thearchitectureof that solution.

10. What are the major components in your system and what are their interfaces?

Functions have simple interfaces (a prototype and a contract). Abstractions (black boxes) have more complex
interfaces.

Simpler interfaces are better. In particular, it’s better to have a few simple interfaces than to have one complex
interface. Each interface should correspond to a single subproblem.Alternatively, “every module hides a
secret.”

For example, my program for finding fingerprint groups has these components:

• A separate, reusable module exporting one function for reading input lines of arbitrary length:

extern char *getline40 (FILE *fp); // Read a line, no matter how long.

• A single function which takes a string representing a line, plus pointers to containers for name and fin-
gerprint. It either parses the line successfully, putting the two elements in their containers, or it returns
false:

1A friend came up with a solution that works in a single step, using a very simple auxiliary data structure, but it exploits a programming technique
you haven’t learned yet.

3

static bool splitline(const char *line, const char ** fp, const char **name);

• Hanson’sList andTable interfaces.

• A struct definition and apply function for use withTable_map, which prints a list of names as appropri-
ate, then frees the list.

• A main function which orchestrates the work.

11. How do the components interact?

For example, in my program for finding fingerprint groups, themain function depends on every other compo-
nent, and almost all the components are independent. The exception is that the code for printing lists of names
shares a secret with the code in themain function (which creates those lists of names). The shared secret is that
both components know the invariants of theTable structure.

4

