
COMP 40 Laboratory: Getting started with image compression

October 7, 2011

Introduction

The new project is all about testing. If you go slowly and testmethodically, you will have an easy time of it. If you
write a big pile of code before testing, debugging it will be NO FUN. This lab shows youexactly how to get started on
testing. There is nothing to submit, but if you follow the instructions, you will finish most of your compressor quickly
and easily. In next week’s lab, we’ll talk about theBitpack module.

Plan of the lab

1. Design theppmdiff program, specified below, which will allow you to compare twoimages programmatically.
Theppmdiff program will help you test your compressor and decompressor.

2. Before building anything,check your design with the course staff.

3. Build ppmdiff.

4. Build a trivial image transformer which goes from the top of Figure 1 (page 4) down to the third box and back
up to the top again.

(a) Read an image in PPM format

(b) Trim to an even number of columns and rows

(c) Convert from scaled integers to floating-point numbers

(d) Convert from floating-point numbers to scaled integers

(e) Write the image in PPM format

5. Useppmdiff to make sure your image transformer works properly. (You canalso confirm by usingdisplay
on the images.)

6. Built a slightly more elaborate version of the transformer from step 4. The more elaborate transformer should
add one more pair of transformations: conversion from RGB color space toY/PR/PB color space and back
again.

7. Test the more elaborate transformer.

After completing these steps, you’ll be well positioned to keep extending your image transformer until you eventually
have a complete compressor and decompressor.

Specification ofppmdiff

Programppmdiff takes two arguments on the command line. Each argument is thename of a PPM file. Optionally,
one or the other argument (but not both) may be the C string"-", which stands for standard input. Here’s what
ppmdiff does:

1

• Both files are read into imagesI andI ′. The width and height ofI andI ′ should differ by at most 1; if the
difference is larger,ppmdiff should print an error message to standard error and should print the number1.0 to
standard output.

• Assumingw andh represent thesmaller of the two widths and heights, compute

E =

√

∑

0≤i<w

∑

0≤j<h(Rij −R′
ij)

2 + (Gij −G′
ij)

2 + (Bij −B′
ij)

2

3× w × h
.

where, for example,Rij is the red pixel located at coordinate(i, j) of imageI. The valueE is theroot mean
square difference of the pixel values in the two images.

• PrintE to standard output with four digits after the decimal point.

Reminders

• Get an end-to-end solution working as quickly as possible, then improve it.

• Compile insanely often. If you use Emacs, learn how to use thecommands

M-x compile

C-x ‘

which will take to straight to the place where errors occur.

If you use Vim, learn to use the commands:make and:cn.

For either editor, your “compile command” should besh compile, notmake or make -k.

• Every time you extend your transformer, run it and compare the results usingppmdiff.

• Every time you get a good answer withppmdiff, run your code again withvalgrind.

What to expect from ppmdiff

Two similar but not identical images have a difference of around 16%:

: nr@labrador ; ppmdiff a.ppm b.ppm

0.1656

Pictures that are not at all similar have a larger difference:

: nr@labrador ; ppmdiff a.ppm c.ppm

0.2628

And just taking a single image, compressing with JPEG, and decompressing it, can produce errors from 0.1% to 1.5%
(sometimes as high as 2.5%):

: nr@labrador ; cjpeg cc.ppm | djpeg | ppmdiff cc.ppm -

0.0013

: nr@labrador ; cjpeg gullfoss.ppm | djpeg | ppmdiff gullfoss.ppm -

0.0165

The numbers above are artifically low, because the original images havealready been compressed with JPEG, so what
we’re seeing is theadditional error introduced on a later run. If we use JPEG to compress anddecompress a lossless
image like a PNG, we see a larger error of around 2.5%:

: nr@labrador ; cjpeg qc.ppm | djpeg | ppmdiff qc.ppm -

0.0255

2

On these kinds of images, the compressor you build should be competitive in quality with JPEG:

: nr@labrador ; 40image -c qc.ppm | 40image -d | ppmdiff qc.ppm -

0.0266

: nr@labrador ; 40image -c cc.ppm | 40image -d | ppmdiff cc.ppm -

0.0223

: nr@labrador ; 40image -c gullfoss.ppm | 40image -d | ppmdiff gullfoss.ppm -

0.0225

3

12 bytes on disk
PPM format

RGB values
scaled integers

RGB values
floats

Y, PB , PR values
floats

P̄B , P̄R, a, b, c, d
floats

P̄B , P̄R, a, b, c, d
scaled integers

32-bit codeword

4 bytes on disk
big-endian order

Compression goes from the top representation to the
bottom representation. Decompression goes from the
bottom representation back to the top representation.

Figure 1: Representations of a2× 2 block

4

