
COMP 40 Laboratory: Testing theBitpack interface

October 14, 2011

Introduction

In this lab, you’ll test your implementation ofBitpack using three technologies:

• Exhaustive testing

• Random testing

• Algebraic laws

You’ll carry out your activity in these steps:

A. Write a functioncheck laws that takes parameters and checks the algebraic laws in the homework.

B. Write a loop that callscheck laws repeatedly, checkingall values of some parameters andrandomly chosen
values of other paraemeters.

C. Call the whole thing from amain() function that opens file/dev/urandom as a source of randomness.

D. Add more laws tocheck laws.

Step D is the most critical step, but when you have the infrastructure in place, it is easy.

Fields

To apply these technologies toBitpack, we introduce a critical idea: afield of a word. A field is simply a sequence
(possibly empty) of contiguous bits within a word. Each fieldis characterized by two numbers:

• Thenumber of bitsin the field is thewidthw.

• Thepositionof the field is given by the position of the least significant bit, or more precisely, by the number of
bits in the word that arelesssignificant than the least significant bit of the field. We abbreviate this positionlsb.

Any field can be characterized by a pair(w, lsb), subject to these constraints:

0 ≤ w ≤ wordsize

0 ≤ lsb

lsb + w ≤ wordsize.

For example, the most significant byte of a 32-bit word would have width8 andlsb = 24.

The use of fields of width zero may be surprising, but it eliminates a lot of case analysis—and case analysis is your
enemy. We’ll define a field of width zero such that it may appearin any position, but it always stores the value0.

With fields of width zero, given any fieldf = (w, lsb), we can define two more fieldsfh andfl which are above and
below fieldf , such that the three fields together make up an entire word. For example, iff = (9, 23) and the word
size is64, thenfh = (32, 32) andfl = (9, 0).

1. Given a general fieldf = (w, lsb) and a word size of 64, give mathematical formulas forfh andfl.

1



Algebraic laws

Your homework assignment already contains two algebraic laws, near the bottom of page 12 of the assignment, near
the phrase “satisfy the mathematical laws you would expect.” There are two different “get-new” laws. For this lab,
you will write those and other laws as a C function you can use for testing.

2. Write a C function calledcheck laws which takes as parametersword, w, lsb, val, w2, andlsb2 as used in
the laws of your handout. The function should assert that thelaws hold.

The body of the function should assert the laws on page 5 of theassignment, but you will have to guard against
exceptions! The laws do not hold ifval does not fit inw unsigned bits. Use#include <except.h> and

TRY

assert(...);

ELSE

fprintf(stderr, "Exception raised during testing\n");

END_TRY;

Exhaustive and random testing

With what arguments will you call the function you define in step 2? Since you know the equations0 ≤ w ≤ 64 and
0 ≤ lsb ≤ 64 − w, you can actually afford to testall combinations of(w, lsb) exhaustively—there are only about
2,000 combinations. But if you also test(w2, lsb2) exhaustively, that comes to 4 million combinations. If testing a law
takes 100 nanoseconds (I’m guessing here), it might take half a second to try all combinations—and that’s with just
one set of values forword andval. So you cannot affordcompletelyexhaustive testing. I recommend that you test
(w, lsb) exhaustively but userandomtesting for other values. In other words, your code should bestructured like this:

for (unsigned w = 0; w <= 64; w++)

for (unsigned lsb = 0; lsb + w <= 64; lsb++)

for (unsigned trial = 0; trial < 1000; trial++) { // 1000 random trials

... set values of other parameters randomly

check_laws(...);

}

As your source of random bits, I recommend that you use the special Linux file /dev/urandom.

Generating random values

Your main function can contain the lines

FILE *randfp = fopen("/dev/urandom", "rb");

assert(randfp);

At this point, you can set an integral value to all random bitsas follows:

uint64_t word;

size_t rc = fread(&word, sizeof(word), 1, randfp);

assert(rc == 1);

A randomword is always safe, but to generate a sensibleval, you will have to make sure that, for exampleval fits
in w signed bits.

3. Given a completely random 64-bitval, how would you compute aval that fits in 5 unsigned bits?

Hint: it can be done in just two instructions.

2



So that you can test both the signed and the unsigned functions in yourBitpack interface, you will want to have both
signed and unsigned randomvals.

4. Put all the pieces together and create a test program you can run.

5. Run it and see what works.

More algebraic laws

The real power of this testing method lies in the algebraic laws. Please add the following laws to your function
check laws:

6. Add a “new-new” law that says if you insert a new field(w, lsb) and another new field(w′, lsb′), and if the two
fields have no bits in common, then the result is the same as first inserting(w′, lsb′) and then(w, lsb). The key
is defining a concise test (formula) for determining whethertwo fields have any bits in common. You will find
that the formulation using width and position leads to an elegant formula.

7. Add a “new-new” law that says if you insert a new field(w, lsb) and another new field(w′, lsb′), and if the field
(w, lsb) is entirely contained within the field(w′, lsb′), then the result is the same is if you had inserted only
(w′, lsb′). Again, search for an elegant formula.

8. Add a “new-get” law that says if you insert a fieldf , the bitsfh that are above (more significant than) the inserted
field are unchanged. For this law, fields of width zero must work. And you must use one of your formulas from
step 1 on page 1.

9. Add a “new-get” law that says if you insert a fieldf , the bitsfl that are below (less significant than) the inserted
field are unchanged. For this law, fields of width zero must work. And you must use the other one of your
formulas from step 1 on page 1.

10. Add some interesting laws regarding the “fits” predicates. For example, it is true or false that

Bitpack_fitsu(n, w) == Bitpack_fitsu(n << 2, w + 2)?

Bitpack_fitsu(n, w) == Bitpack_fitsu(n >> 2, w - 2)?

11. To test your code thoroughly, you will want duplicate signed and unsigned versions of all your laws. You can
do this after lab.

Remember, in the C programming language, the result of a shift by
64 bits is not defined.You must treat this case specially in yourBitpack

module and in any testing code.

3


