
COMP 40 Lab: Introduction to profiling tools

November 12, 2010

Pairs

If you have not yet submitted a working Universal Machine, youmust notpartner with someone who does
have a working Universal Machine they can measure.

If you have a working Universal Machine that can runmidmark.um in less than three minutes,please start
this command in a Terminal windowright away:

valgrind --tool=callgrind --dump-instr=yes ./um midmark.um

If you do not have a working Universal Machine, please continue to theintroduction below.

Introduction and instructions

If 80% of a program’s time is spent in input and output, and only 20% of the program’s time is spent in
computation, you’ll get a bigger performance improvement by speeding upthe I/O, where the most time is
spent. How do you know where the most time is spent? You could guess, but even programmers with many
years of experience are notoriously bad guessers. This lab will introduce you to tools you can use so you
don’t have to guess.

The plan of the lab is

1. Get code from thegit repository for the lab.

2. Usevalgrind andkcachegrind to answer some simple questions about image rotation.

3. Compare profiles of two versions ofunblackedges

4. Submit the answers to those questions by usingsubmit40-lab-profile

5. If time permits, and you have a working UM, usevalgrind andkcachegrind to answer some simple
questions about the Universal Machine

1

Getting the code

If you run

git clone -o comp40 /comp/40/git/lab-profile

then you should get a fileQUESTIONS as well as some source code and acompile script. Running
sh compile should get you anunblackedges binary.

• If you look at the link command in the compile script, you will notice thatunblackedges is linked
against anoptimizedversion of CII, using the linker argument-lcii-O2.

You should also be able to link against-lcii-O1.

Creating an execution profile usingvalgrind

As a sanity check, run

pngtopnm /comp/40/images/bitonal/hyphen.png | ./unblackedges | display

If all is well, you should see a page of text with black edges removed. Next,to know how long the program
takes, run it with the/usr/bin/time command:

pngtopnm /comp/40/images/bitonal/hyphen.png | /usr/bin/time ./unblackedges > /dev/null

Finally, to get a profile, usevalgrind:

pngtopnm /comp/40/images/bitonal/hyphen.png |

valgrind --tool=callgrind --dump-instr=yes ./unblackedges > /dev/null

The first option tellsvalgrind to create acall-graph profile. The second option tellsvalgrind to record
the number of times each machine instruction is executed. The overhead of profiling is very high—expect
this step to take a few minutes.

Viewing the profile with kcachegrind

Look in your directory for the profile data. It will be in a file calledcallgrind.out.pid, wherepid (process
ID) is a number that identifies the Unix process used to run your program. Supposing that yourpid is 2268,
run

kcachegrind callgrind.out.2268

and view the results. Here are some things to try with the user interface:

2

1. Click onmain in the left panel. This enables you to view the whole program.

2. In the sequence of tabs near the top of the screen (in the middle), click onCallee Map. This tool helps
you visualize a tree as a set ofnested rectangles. The total area inside a rectangle is the time spent in
a given function and all its callees, and so on transitively. So the full rectangle is the whole program,
andBit_put is a function that takes a significant amount of time by itself, without much time spent
calling other functions.1

In the upper right, you can also see that a lot of time is spent inputc.

3. In the sequence of tabs near the bottom of the screen (in the middle), clickonCall Graph. This shows

• Each procedure

• The number of instructions executed in that procedure

• Arrows to other procedures it called.

4. Click on the large % sign in the row of icons in the upper left, just below the menu. Displays switch
from counting instruction fetches to percentages. Return the call graph and figure out what fraction of
time is spent in I/O versus actually removing black edges. Add this to theQUESTIONS file for the lab.

Answering simple questions about image rotation

At this point you should be ready to profile and view image-rotation code. Please do so, answer the questions
in the lab’sQUESTIONS file, and runsubmit40-lab-profile.

Advanced exercise: improvingunblackedges

1. Copy fileunblackedges-lab.c to file unblackedges-queue.c.

2. On lines 23 and 24 ofunblackedges-queue.c, please changeSeq addlo to Seq addhi. This
changes switches the graph search from depth-first search to breadth-first search.

3. Add a case to the linking code in thecompile script so that you can link a new executable binary
unblackedges-bfs to do black-edge remove via breadth-first search.

4. Time it and profile it.

5. What happens to the total time?

6. What happens to the fraction of time spent inBit_put?

7. Since the implementation ofBit_put has not been improved, what has changed?

Improving Universal Machine

If you do not finish this exercise during lab, you do not have to finish it outside of lab. But if you have time,
it will be helpful preparation for the profiling assignment. At this point you should be ready to profile and
view your Universal Machine.

1Alert! You may see different behavior on the lab machines than I saw on the machine on which this lab was prepared.

3

Submitting

Please runsubmit40-lab-profile before leaving the lab, whether or not you have profiled theUniversal

Machine.

4

