Group

<table>
<thead>
<tr>
<th>Keeper of the record:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other group members:</td>
</tr>
</tbody>
</table>

Coding coefficients of the Discrete Cosine Transform

Your homework requires you to convert luminance of a 2×2 block of pixels using the Discrete Cosine Transform, which produces coefficients a, b, c, and d. In principle, b, c, and d range over the interval $[-0.5, +0.5]$, but in practice almost all values fall into the range $[-0.3, +0.3]$. You must exploit this property or your compressed images will have ugly artifacts.

Your job is to code the real numbers b, c, and d as signed, scaled, 5-bit integers. Let us assume that a signed 5-bit integer can represent exactly the set of integers $\{n \mid -15 \leq n \leq +15\}$. (This assumption is almost but not quite the truth.) Please write C functions `encode` and `decode` with these prototypes:

```c
int encode(float x);
float decode(int n);
```

Your functions should satisfy four algebraic laws and an \forall-\exists property:

- $\text{encode}(\text{decode}(n)) = n$ when $|n| \leq 15$
- $\text{decode}(\text{encode}(x)) \approx x$ when $-0.3 \leq x \leq 0.3$
- $\text{encode}(x) = \text{encode}(+0.3)$ when $x > +0.3$
- $\text{encode}(x) = \text{encode}(-0.3)$ when $x < -0.3$
- $\forall n : |n| \leq 15 : \exists x : |x| \leq 0.3 : \text{encode}(x) = n$ (all bits are used for the interval $[-0.3, +0.3]$)

where $x \approx y$ is defined to mean $|x - y| \leq \frac{1}{30}$.

1. Write the code.
2. Explain how you would test it.

Please return your work to the course staff.