Homework: Simple functions and conditionals

COMP 50

Fall 2013

This homework is due at 11:59PM on Monday, September 16.
If all goes well, you will download an extension to DrRacket that enables you to submit your homework direct from
DrRacket. If not all goes well, Plan B will be announced on Piazza.

All the exercises should be done using the Beginning Student Language on the “choose language” option DrRacket’s
Language menu. You can use the same menu to add teachpacks; when you do, the display in the lower left should read
Beginning Student custom.

Finger Exercises

For this homework, I am recommending the following finger exercises:

Exercises 2.3.1 and 2.3.2 in the book.
Write function years—>months which converts a number of years to a number of months.
Write function radians->degrees which converts an angle in radians to an angle in degrees.

Write a function that takes an image and returns the string “landscape” if the image is wider than it is tall,
“portrait” if the image is taller than it is wide, and “square” if the image is as equally tall as it is wide. You will
need to add the image . rkt teachpack from the 2ht dp teachpacks.

Write a function that is given the value of cos 6 and that returns the great-circle distance in meters between two
points on the Earth’s surface that are separated by the angle 6.

Domain knowledge: According to the official “geoid datum”, the Earth’s radius is deemed to be 6378137.0
meters. The Earth is official not a sphere, but you should treat it as such.

Racket knowledge: using the Racket Documentation button on the Help menu, search for and understand the
function acos.

Problems to submit

1. Define function dd/mm/ss->radians which converts an angle in degree-minute-second form (DD° M M"

55.5855") to radians.

. Since the time of the ancient Greeks, people have used geographic latitude as an indicator of climate. The old
latitude models have been superseded by more sophisticated models that take account of terrain, winds, and ocean
currents, but they are still not a bad approximation. Using the following table, define a function that converts a
latitude in degrees to the name of a climate:

Latitude range Expected climate

below 23.5 tropical
23.5t0 35 subtropical
35t050 temperate
50to 70 subpolar
above 70 polar

3. Century Bank in Medford offers certificates of deposit at the following interest rates:

Term Rate

3 month up to 6 months 0.25%
6 months up to 1 year 0.35%
1 year to 2 years 0.50%
2 years to 3 years 0.80%
3 years to 5 years 0.90%
5 years 1.00%

36 months (for new customers only) 1.34%
48 months (for new customers only) 1.83%

60 months (for new customers only) 2.03%

Define two functions, one for regular customers and one for new customers, each of which takes a given term in
months and returns the interest rate available for a certificate of deposit with that term.

4. Using teachpack guess. rkt, available from the Language menu (Add Teachpack), do Exercise 5.1.2 in the
textbook.

5. A Labrador retriever will eat anything. And if a piece of orange chicken is dropped on the floor, within the first
100 milliseconds, the Lab will close 10% of the distance between itself and the chicken.
Using the 2htdp/image teachpack, design a program that illustrates the first step taken by the Labrador
retriever:
e The retriever and the chicken should be located in an empty room that measures 300 by 300 pixels.

e The main function should take two posn values called dog and food. It should produce an image in
which

The dog is represented by a solid black circle.

The chicken (food) is represented by an orange dot.
The expected trajectory of the retriever is shown as a green line.

The location where the retriever will be in 100 milliseconds, which is 10% of the distance along its
trajectory, is shown as an outlined black circle.

Here is a sample output:

Domain Knowledge (Geometry): To find the black circle between the dog and the food, compute 10% of the
signed distance in each dimension and add it to the coordinates of the dog. To be sure you get the correct sign of
the distance, you’ll want to consider several configurations.

http://www.youtube.com/watch?v=r14DJ7sUP_U

Figure 1: Sample retriever step

Domain Knowledge (Computer Graphics): By convention, in computer graphics, larger values on the y axis
are down.

Domain Knowledge (Dogs): the shortest distance between a dog and food is a straight line.

Follow the design recipe for programs in Section 3 of the textbook. You may find it helpful to consult Section 3
of the second edition, especially Section 3.4 (From Functions to Programs).

Karma problems

A.

Change the traffic-light animation from the lecture (which is very similar to an example from the second edition)
so that the relative times for red, green, and yellow lights behave more like real traffic lights. You will need to use
the big-bang function in the 2htdp/universe teachpack. You will also need to define a world state that
knows not only what color the light is but also how much time is left before the light is due to change.

. Using the big-bang function in the 2htdp/universe teachpack, animate the Labrador retriever going for

the food. Have the retriever cover 10% of the remaining distance at each step. ' When the dog closes to a distance
within 5 pixels of the food, make the food disappear and stop the animation.

Resources

For information on the 2htdp/image and 2htdp/universe teachpacks, you can go directly to the Racket
Documentation. (We will also do some image things in lab.) For a more leisurely introduction,

Section 1.4 of the second edition give a thorough introduction to images.

Section 3 of the second edition is primarily about designing programs as collections of functions, but it has a
great many examples of big-bang.

You can develop examples any way you want, but your submitted examples must be formulated as test cases. Use
check-expect or check-within. Put your tests in with your definitions.

How your work will be evaluated

We will evaluate your work by judging it against the table of criteria below. The table may look big and intimidating,
but it boils down to these issues:

Did you use Beginning Student Language with suitable teachpacks?
Is the code well formed? That is, is it laid out nicely on the page?
Are the names well chosen?

Have you followed the design recipes?

1. Are there data descriptions where needed? For conditional functions, does the code show that all possible
situations have been enumerated?

2. Does every function have an appropriate signature (called “contract” in the first edition), purpose statement,
and header?

3. Did you come up with examples?

4. Has the function body been developed by following a template that is suited to the problem and to the class
of data being consumed?

I As the dog closes in on the food, the dog slows down. This is not how real dogs behave.

http://www.ccs.neu.edu/home/matthias/HtDP2e/part_one.html#%28part._ch~3ahtdp%29
http://www.ccs.neu.edu/home/matthias/HtDP2e/part_one.html#%28part._sec~3adesign%29
http://www.ccs.neu.edu/home/matthias/HtDP2e/part_one.html#%28part._sec~3aarith-images%29
http://www.ccs.neu.edu/home/matthias/HtDP2e/part_one.html#%28part._ch~3ahtdp%29

5. In the coding step, have you carried out the purpose statement and only the one purpose statement?

6. Does your submission included test cases derived from your examples using check-expect and/or
check-within? Are the test cases sufficient to handle every situation from your analysis and every
clause in every relevant data description?

Especially as you get started, I urge you to get a member of the course staff to examine your work before the deadline, to
make sure you know how to follow the design recipe. You can come to office hours or post private questions on Piazza.

Language and
libraries

Form

Exemplary

Satisfactory

Must Improve

e The solution uses Racket’s
Beginning Student Language,
and where needed, the
2htdp/image and
2htdp/universe
teachpacks.

e The solution uses
additional teachpacks.

o The solution uses Racket
libraries that are not
teachpacks.

e The solution uses the
wrong language.

e All code fits in 80 columns.
e Or, almost all code fits in
80 columns, and all code fits
in 90 columns.

e Indentation is consistent
everywhere.

e All code respects the
offside rule: any code
enclosed by parentheses or
brackets appears to the right
of the opening parenthesis,
even if the code is split
across multiple lines.

e There is never space
immediately inside a
parenthesis or bracket.

e Except where the outside
of a parenthesis is on the
inside of another parenthesis,
there is whitespace to the
outside of every parenthesis.
(The start and end of a line
both count as whitespace.)

e No code is commented out.

e Several lines are wider
than 80 columns.

e In one or two places, code
is not indented in the same
way as structurally similar
code elsewhere.

e The code contains one or
two violations of the offside
rule.

e Conventions regarding
whitespace and parentheses
are violated in more than
three places.

e Many lines are wider than
80 columns.

e There is a line wider than
90 columns.

e The code is not indented
consistently.

e The code contains three or
more violations of the offside
rule.

e Solution file contains code
that has been commented
out.

Names

Data description
(design recipe
step 1)

Exemplary

Satisfactory

Must Improve

e Significant constants,
whether mentioned in a
problem statement or arising
elsewhere, are given names
(as defined variables)

e Each function is named
either with (1) a noun
describing the result it
returns, (2) a verb describing
the action it does to its
argument, (3) a word or
words describing a
relationship among the
arguments, (4) two nouns
connected by an —> arrow, or
(5) a property followed by a
question mark.

e In each function definition,
the name of each parameter
is a noun saying what, in the
world of ideas, the parameter
represents.

e Or the name of a parameter
is the name of an entity in
the problem statement, or a
name from the underlying
mathematics.

e The name of defined
variable is a noun saying
what, in the world of ideas,
the varaible represents.

e Or the name of a varible is
the name of an entity in the
problem statement, or a
name from the underlying
mathematics.

e One or two important
constants are not named.

e Functions’ names contain
appropriate nouns and verbs,
but the names are more
complex than needed to
convey the function’s
meaning.

e The name of a parameter is
a noun phrase formed from
multiple words.

o Although the name of a
parameter is not an English
noun and not a name from
the math or the problem, it is
still recognizable—perhaps
as an abbreviation or a
compound of abbreviations.

e The name of a variable is a
noun phrase formed from
multiple words.

e Although the name of a
variable is not an English
noun and not a name from
the math or the problem, it is
still recognizable—perhaps
as an abbreviation or a
compound of abbreviations.

e No important constants are
named.

e Function’s names include
verbs that are too generic,
like “calculate”, “process”,

“get”, “ﬁnd”, or “Check”

e Helper functions are given
names that don’t relate to
their purpose statements but
that instead indicate a vague
relationship with another
function.

e Course staff cannot
identify the connection
between a function’s name
and its purpose statement.

e The name of a parameter is
a compound phrase which
could be reduced to a single
noun.

e The name of some
parameter is not
recognizable—or at least,
course staff cannot figure it
out.

e The name of a variable is a
compound phrase which
could be reduced to a single
noun.

e The name of some variable
is not recognizable—or at
least, course staff cannot
figure it out.

e For every clause in the data
description, course staff can
use the clause to create

examples of that kind of data.

The examples are acceptable
to DrRacket.

e There is one clause in one
data description for which
the course staff are unable to
come up with examples.

e The solution contains more
than one data-description
clause for which the course
staff are unable to come up
with examples.

Signature,
purpose statement,
and header
(design recipe
step 2)

Exemplary

Satisfactory

Must Improve

e Each function comes with
a signature (called a
“contract” in the first edition)
that is consistent with the
function’s header.

e Whenever a function’s
signature refers to a kind of
data (sometimes called a
class of data), that data is
either atomic data built into
BSL or it is explained in an
explicit data description
included in the solution.

e From each function’s
purpose statement, it is easy
to see how each parameter
affects the result.

e Each function’s purpose
statement fits in 90
characters or less.

e Each function’s purpose
statement says only what the
function does, not how

e Function signatures and
purpose statements are
sufficiently precise that
course staff can
independently create
examples of what the
function is supposed to do.

e Each function comes with
a signature, which always
has the correct number of
parameters and is usually but
not always consistent with
the function’s header.

e Some functions have a
signature that uses a different
name from the function’s
header.

e A function’s signature
mistakenly refers to atomic
data built into BSL, but a
more restrictive data
description is needed.

e A function’s purpose
statement mentions every
parameter, but the course
staff cannot easily see how
each parameter affects the
result.

e Some function’s purpose
statement is over 90
characters, but it fits in 140
characters.

e Some function’s purpose
statement contains
information about ow the
function works, not just what
it does.

o Function signatures and
purpose statements have a
little bit of wiggle room, but
course staff can narrow down
potential examples to just a
few possibilities.

e Not every function has a
signature.

e Some functions have
signatures with the wrong
number of parameters.

o Less than half the functions
have signatures (serious
fault).

e A function’s signature
refers to a class of data that
is not atomic data built into
BSL, and there is no data
description.

e A function’s purpose
statement does not mention
every parameter.

e Some function’s purpose
statement is over 140
characters.

e Some function’s purpose
statement narrates a
sequence of events that
occurs when the function is
called.

e Course staff are unable to
use function signatures and
purpose statements to create
independent examples.

Examples and
tests (design
recipes steps 3
and 6)

Exemplary

Satisfactory

Must Improve

e Every function, including
image-building functions, is
covered by tests using
check—-expect or
check-within.

e Every function should be
covered by tests, but not
every function is covered
because some of the tests are
written using plain calls
instead of check-expect
or check—-within (minor
deduction)

e For every function that
uses cond, for every
alternative within every
cond, there is a test case
using check-expect or
check-within that
exercises the alternative.

e Test cases using
check-expect or
check-within are placed
either immediately before or
immediately after the
definitions of the functions
they test.

e Submitted test cases pass.

e Every function, except
possibly some
image-building functions, is
covered by tests using
check-expect or
check-within.

e Functions include
examples in informal English
that could be expressed using
check-expect or
check-within, but
aren’t.

e One cond is not fully
tested.

e Test cases appear before
the signature (aka contract)
and purpose statement of a
function.

e One or more submitted test
cases fails because of small
inaccuracies in arithmetic.

e Some functions are defined
without examples or tests.

e There are multiple conds
that are not fully tested.

o All test cases are gathered

together into one lump that is
separated from the functions
they test.

e One or more submitted test
cases fails.

e Or, test cases (or examples)
appear to be present, but they
don’t use check-expect
and friends.

e Racket Run does not
report passing any tests, and
the course staff cannot find
anything that looks like a test
case (serious fault).

Function bodies
(design recipes
stesp 4 and 5)

Exemplary

Satisfactory

Must Improve

e Solutions to large problems
are tackled by decomposition
that uses one or more helper
functions.

e Each function body is
small and simple enough that
the course staff can easily
verify whether the body
meets the obligations set out
in the purpose statement.

e Each function is about 5 to
9 lines of Beginning Student
Langauge. The line count is
achieved through simple
structure, not by cramming a
lot of stuff on one line.

e Or, some functions are
larger than 5 to 9 lines, but
the extra size is forced on the
function because of a data
description that has many
alternatives.

e The body of every function
follows the template(s)
determined by the input data
of that function.

e Every cond contains a
case with an explicit test for
every alternative. An
alternative may be a situation
in a problem statement (as
described in the design
recipe for conditionals) or it
may be an alternative clause
in a data description.

e Solutions to large problems
do not use helper functions,
but they are so clean that the
staff can follow them
anyway.

e Course staff have to work
to tell whether the code is
correct or incorrect.

e Some functions of ten or
more lines, but course staff
can follow them.

e There is a function whose
body almost follows the
template determined by the
input data, but the course
staff sees where one or more
shortcuts have been taken.

e A conduses else
instead of explicit tests.

e Solutions to large problems
do not use helper functions.

e From reading a function
body, course staff cannot tell
whether it is correct or
incorrect.

e From reading a function
body, in the context of its
signature and purpose
statement, course staff
cannot easily tell what it is
doing.

e One or more functions of
20 or more lines.

e So much stuff is crammed
into a small number of lines
that the course staff have a
hard time following the code.

e The course staff had a hard
time following your code
(staff will say what they saw
and where)

e There is a function whose
body does not follow the
template determined by the
input data, and the course
staff cannot see the
relationship.

e A cond mixes up multiple
situations from a problem
statement or multiple clause
from a data description.

e Or, problem situations and
data-description clauses are
mixed up in a single cond

e Or, there is a cond in the
code that is not justified by
an analysis of input data.

	Finger Exercises
	Problems to submit
	Karma problems
	Resources
	How your work will be evaluated

