Homework: Self-referential data

COMP 50

Fall 2013

This homework is due at 11:59PM on Monday, October 7.
Submit your solutions in a single file using the COMP 50 Handin button on DrRacket; the homework is the t rees
homework.

All the exercises should be done using the Beginning Student Language with list abbreviations.

In this homework, all lists are made with empty and cons as described in the book. Selector functions for the cons
case are first and rest. For testing, you may use the 11ist function to make lists.

Special data description for this homework

In the first problem of this homework you will be locating stations on the Northeast Corridor railway line. Boston is
the northern terminus, and we will be locating stations by measuring their distance (south) from Boston. You can get
real-world information about stations on the Wikipedia page for the Northeast Corridor.

A station is a structure:
(make—-station name distance)

where name is a string and distance is a number representing the distance in miles from Boston.

A ID-tree of stations is either:

e A station

e A structure (representing a boundary point on the line)
(make-boundary distance south north)
where

— distance is the distance of the boundary point from Boston

— south is a 1D-tree of stations, all of which are south of the boundary (that is, they are further away from
Boston)

— north is a ID-tree of stations, all of which are north of the boundary (that is, they are closer to Boston
than the given distance)


http://en.wikipedia.org/wiki/Northeast_Corridor#Station_stops

Finger Exercises
For this homework I am recommending the following finger exercises:

e In the first edition, Exercises 9.5.2, 9.5.6, 10.1.2, 10.2.2 (but using strings instead of symbols), 10.2.4, 10.2.5,
11.3.5,12.2.1, and 12.2.2.

e Define a function that computes how many stations there are in a 1D-tree of stations.

e Define a function that computes the depth of a 1D-tree of stations.

Problems to submit

1. Define a function that takes as arguments a distance in miles and a 1D-tree of stations, and which returns
information saying the name of the nearest station, how far away it is, and in what direction. You must write a
data definition that says how the information you return will be represented.

Use the design recipe for self-referential data (natural recursion). In addition, plan on writing some helper
functions that operate on distances and stations. Use your wish list!

Hint: For purposes of testing, you will do well to define a function that takes a tree and two numbers 1o and hi,
and checks the given tree to be sure that

e All stations have distances between 1o and hi

e For every boundary in the tree, the stations south and north of that boundary are located at distances that are
consistent with the location of the boundary

Use this function to make sure that your test trees are well formed.

2. Two fisherman go out in a boat and use nets to pull a whole bunch of bluegills out of the Mystic Lakes. They
agree to divide the catch evenly. You are given two buckets and two scales and are charged with placing the fish
into the buckets, dividing evenly by weight. A friend of Mr Turing’s whispers to you that dividing as evenly as
possible might take more time than you have. The fishermen agree that your time is worth something, and they
will be content if you place one fish at a time in the fairest way possible.

To prove to the fishermen that your division of fish is reasonably fair, you will use “computational buckets”.
A computational bucket not only holds a list of fish but also contains a readout that instantly gives the total weight
of the fish in the bucket.

Write a data definition for a pair of computational buckets. The only important thing about a fish is its weight.

Define a function that takes as arguments a list of fish and returns a pair of computational buckets such that each
bucket contains about the same weight of fish as the other bucket.

Use the design recipe for self-referential data (natural recursion).
It turns out that the fairness of your division is affected by the order in which you consider the fish. Please create
a random list of 30 fish and run three experiments:

o Divide the fish

o Sort the list of fish in decreasing order of weight, then divide them

o Sort the list of fish in increasing order of weight, then divide them

How do the experiments affect the fairness of the division?

A convenient way to report on the experiments is to produce a list of three strings, as in the following example:

> (three-experiments (N-random-fish 30))

‘' ("When divided, randomly ordered fish give buckets that differ by [REDACTED]"
"When divided, increasing fish give buckets that differ by [REDACTED]"
"When divided, decreasing fish give buckets that differ by [REDACTED]")



Hints:

e To sort the fish, you will want to use the insertion sort defined in section 12.2 of the first edition textbook.
You can develop a similar sort function that sorts in increasing order.

o If you are not sure how to create a list of NV random fish, have a look at the treatment of natural numbers in
Section 11 of the first edition.

Karma Problem

A. If a ID-tree is balanced, there is a very efficient way to locate stations quickly. I will give you the idea with an
example:

e Suppose you are looking for a point 150 miles from Boston, and you find a boundary located at 180 miles
from Boston. Your first step should be to look north of the boundary for the closest station. If that station is
closer than 30 miles, you don’t have to look south of the boundary. Why? Because every station south of
the boundary is at least 30 miles away.

Using this insight, define a function that finds the closest station without always looking at all stations.

(To test such a function, you can create a 1D-tree in which certain stations are replaced by the value ' hole, and
you can check to make sure that you can find the nearest station without ever looking at a hole. You can also use
check-error to confirm that your original code does look at holes.)

Later in the term we will see how to build such balanced trees, and I hope we will look at 2D-trees, which can be
used to locate nearby cities quickly.



	Special data description for this homework
	Finger Exercises
	Problems to submit
	Karma Problem

