
1

Judy Stafford
Comp 80 – Meeting 3

February 1, 2010

More on Syntax

Agenda for the Day

♦ Administrative Stuff
– Moodle…
– Classlist at 55 without waiting list

♦ More on Syntax
♦  In-Class Exercise
♦ Using parse trees

2

2

Last time

♦ Syntax
– Problem: how to precisely describe what a

properly formed program looks like
– Must cover all possible programs

♦ Solution: formal grammars
–  Inspired by work in linguistics
– Notation: Backus-Naur Form (BNF)

Context-free grammar

♦  Formally: context-free grammar is
–  G = (s, N, T, P)
–  T : set of terminals (the “words”)
–  N : set of non-terminals (parts of speech)
–  P : N → (N ∪ T)* : production rules (sentence structure)
–  s ∈ N : start or goal symbol

♦  Note:
–  In a complete grammar all non-terminals appear on

the left-hand side of at least one production

Production rule
1
2

 non-terminal → terminals or non-terminals
 | …

3

Using a BNF
Two ways:
♦  Generate strings – called derivation

Idea: Use productions as rewrite rules
–  Start with the start symbol (a non-terminal)
–  Apply productions:
 Choose a non-terminal and “expand” it to the right-hand side of

one of its productions
–  When only terminal symbols remain, we have a legal string

♦  Recognize strings – called parsing
–  Start with a string of terminals (e.g., a program)
–  Try to figure out if it can be derived from the grammar
–  Topic of comp181 – Compilers

Applied to programming

A real grammar

♦  Arithmetic expressions
–  Numbers and variables (terminals called “num” and “id”)
–  Binary operators: +, -, *, /
–  For now, no parentheses

♦  Examples:
–  3 + 5
–  3 + 5 * 6
–  5 / 9 * F – 32
–  x – 2 * y

4

BNF for Expressions

Note:
♦  Special terminals

–  number and identifier
–  Categories of terminals
–  Examples:

 <num, “5”>
 <id, “foo”>

♦  How are terminals specified?
–  Typically, using regular expressions
–  We probably won’t cover that topic

Production rule
1
2
3
4
5
6
7

 expr → expr op expr
 | number
 | identifier
op → +
 | -
 | *
 | /

Language of expressions

♦  What’s in this language?

 We can build the string “x - 2 * y”
 This string is in the language

Production rule
1
2
3
4
5
6
7

 expr → expr op expr
 | number
 | identifier
op → +
 | -
 | *
 | /

Rule Sentential form

- expr
1
3
5
1
2
6
3

expr op expr
<id,x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

5

More on derivations

♦  Different derivations are possible
–  At each step we can choose any non-terminal
–  Rightmost derivation:

»  Always choose right-most non-terminal

–  Leftmost derivation:
»  Always choose left-most non-terminal

–  What other derivations are possible?
»  “random” derivations – not of interest

♦  Question:
–  Does it matter?

Left vs right derivations

♦ Two derivations of “x – 2 * y”
Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr op expr
<id, x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

Rule Sentential form
-
1
3
6
1
2
5
3

expr
expr op expr
expr op <id,y>
expr * <id,y>
expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Left-most derivation Right-most derivation

6

Derivations and parse trees

♦  Two different derivations
–  Both are correct
–  Let’s look carefully at the differences

♦  Represent derivation as a parse tree
–  Leaves are terminal symbols
–  Inner nodes are non-terminals
–  To depict production α → β γ δ

 show nodes β,γ,δ as children of α	

 Tree is often used to represent semantics
 We want the structure of the parse tree to capture the meaning
of the sentence

α	

δ	
γ	
β	

Example (I)

♦  “Concrete” syntax tree
–  Captures the exact grammatical structure
–  Often has lots of extraneous information

expr

expr op expr

expr op expr y *

x - 2

Parse tree

Rule Sentential form
-
1
3
6
1
2
5
3

expr
expr op expr
expr op <id,y>
expr * <id,y>
expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Right-most derivation

7

Concrete vs abstract

♦  Concrete syntax
–  The exact symbols used to write a program
–  The precise grammatical structure

♦  Abstract syntax
–  An abstraction of the program syntax
–  Eliminates uninteresting details of the derivation
–  Closer to the “meaning” of the program
–  Often something used inside the compiler or interpreter

♦  Examples
–  Infix: 3 + (4 * 5)
–  Postfix: 3 4 5 * +
–  Prefix: (+ 3 (* 4 5))

+

3

4

*

5

Concrete vs abstract

♦  Another example:

♦  What are some differences?
♦  Note: these programs do the same thing

–  Different concrete syntax
–  Same (or similar) abstract syntax
–  Identical semantics

while i < N do begin

 i := i + 1

end

while (i < N) {

 i = i + 1;

}

Pascal C/C++

8

Abstract syntax tree

♦  Turn concrete syntax into abstract syntax
–  Eliminate extra junk (intermediate nodes)
–  Move operators up to parent nodes
–  Result: abstract syntax tree

expr

expr op expr

expr op expr y *

x - 2

y

*

x

-

2

Back to derivations

Rule Sentential form
-
1
3
5
1
2
6
3

expr
expr op expr
<id, x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

Left-most derivation

expr

expr op expr

expr op expr x -

2 * y

Parse tree

9

Derivations

♦  Two different abstract syntax trees for x – 2 * y

Which one do I want?

y

*

x

-

2

Left-most derivation Right-most derivation

y

* x

-

2

Derivations and semantics

♦ Problem:
– Two different valid derivations
– One captures “meaning” we want
 (Arithmetic precedence rules)

– Key idea: shape of tree implies its meaning

♦ Can we express precedence in grammar?

10

Derivations and precedence

♦  Question:
–  Which operations are

evaluated first in the abstract
syntax tree?

–  Operations deeper in tree

♦  Solution: add an
intermediate production
–  New production isolates

different levels of precedence
–  Force higher precedence

“deeper” in the grammar

expr

expr op expr

expr op expr y *

x - 2

Parse tree

Adding precedence

♦  Two levels:

♦  Observations:
–  Larger: requires more rewriting to reach terminals
–  But, produces same abstract parse tree under both

left and right derivations

Production rule
1
2
3
4
5
6
7
8

 expr → expr + term
 | expr - term
 | term
term → term * factor
 | term / factor
 | factor
factor → number
 | identifier

Level 1: lower precedence –
higher in the tree

Level 2: higher precedence –
deeper in the tree

11

Expression example

 Now right derivation yields x – (2 * y)

Rule Sentential form
-
2
4
8
6
7
3
6
8

expr
expr - term
expr - term * factor
expr - term * <id,y>
expr - factor * <id,y>
expr - <num,2> * <id,y>
term - <num,2> * <id,y>
factor - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Right-most derivation Parse tree

expr

expr op

op

x

-

2

* y

term

fact

term

term fact

fact

With precedence

expr

expr op expr

expr op expr y *

x - 2

expr

expr

x

-

2

*

y

term

fact

term

term fact

fact

expr

expr

x

-

2

*

y

term

fact

term

term fact

fact y

*

x

-

2

12

In-Class Assignment

♦  Find a partner and get out a piece of paper
♦  Draw both an concrete and abstract syntax tree

for: 2* A + 9 – B * 4

Exchange with neighbors – grade
Send over to Chris

Production rule

1
2
3
4
5
6
7
8

 expr → expr + term
 | expr - term
 | term
term → term * factor
 | term / factor
 | factor
factor → number
 | identifier

A quick look at BNF for C++

♦  http://www.nongnu.org/hcb/

24

13

Next time

♦ A bit more on Syntax

♦  Introduction to Scheme

