
1

Judy Stafford
Comp 80 – Meeting 4

February 3, 2010

For today, lecture notes available at:
http://www.cs.tufts.edu/comp/80/lec

Code Translation
and

Introduction to Scheme

Agenda for the Day

♦ Administrative Stuff
– Class list is okay
– Book ready to float – anyone still need it?
– Moodle…

♦ Three Approaches to Code Translation
♦  Introduction to Scheme

– a “functional” language

2

2

Last time

♦ Syntax
– Problem: how to precisely describe what a

properly formed program looks like
– Must cover all possible programs

♦ Solution: formal grammars
–  Inspired by work in linguistics
– Notation: Backus-Naur Form (BNF)

So, How is this used?

♦ Abstract syntax tree is the basis of
“interpretation” and “compilation”
–  Interpreted languages

» Respond to you in real time
» You type in statement and get a result

♦  or

» You feed it a list of statements in a file and get a
result

– Compiler
» You feed it a file with source code and it converts it

to executable code that can be saved and run later
4

3

So, again, How is it used?

♦  Compilation (ex: C++) -- Five basic phases

♦  Interpretation (ex: Scheme) –
–  Each line is parsed into its smallest operations
–  Each operation is executed
–  Code remains as text – you just get the top line of the diagram

above
»  And, you get that every time you run the program!

5

How’s Parsing done?

♦ Requires three phases
– Lexer – read characters in and form tokens

» Requires a scanner and a tokenizer
» Produces a table of tokens

– Syntactic analysis –
» Validates that tokens form a legal expression

– Semantic analysis –
» Type checking
» Variable def/use relationships
» etc.

6

4

And then there is Java…

♦  Java code is “compiled” into byte
code

♦  JVM (Java Virtual Machine)
“interprets” the bytecode

“Write once, run anywhere”

7

Java Byte Code

♦  Example Java:
 StringBuffer aStringBuffer = new StringBuffer("Hello");
aStringBuffer.append("World !");!

♦  Example Byte Code:

0 !new #8 <Class java.lang.StringBuffer>!
3 !dup!

4 !ldc #2 <String "Hello">!
6 !invokespecial #13 <Method java.lang.StringBuffer(java.lang.String)>!
9 !astore_110 aload_111 ldc #1 <String "World !">!
13 invokevirtual #15 <Method java.lang.StringBuffer append(java.lang.String)>!
16 pop!

♦  The Byte Code is what is distributed and run
–  When it is run it is interpreted by the JVM for the target platform

8

5

Summarizing

♦  Grammars have been developed to define an
unambiguous way for the machine to translate
code

♦  Parse trees are used as an internal
representation of the code

♦  Compilers and interpreters use parse trees to
check the code and give feedback to
programmer

♦  Finally the code is turned into executable in one
of the three ways

9

Intro to Scheme

♦ Scheme is a functional language
– That doesn’t mean it has more functions than

C++ or Java
–  It means it is more like functions in

mathematics

10

6

John McCarthy

♦  Pioneer in AI
–  Formalize common-

sense reasoning
♦  Also

–  Proposed timesharing
–  Mathematical theory

♦  Lisp
 stems from interest in

symbolic computation
(math, logic)

Lisp, 1960

♦  Look at historical Lisp
–  Example of elegant, minimalist language
–  Not “C” (or Java): a chance to think differently
–  Many general themes in language design
–  Perspective

»  Some old ideas seem new, but some are just old

♦  Many different dialects
–  Lisp 1.5, Maclisp, …, Scheme, ...
–  CommonLisp has many additional features
–  Use "Lisp" to mean family of languages
–  This course: we’ll use Scheme

7

Running programs

♦  A modern version of Lisp: Scheme
–  Interactive system: DrScheme

 Download from www.drscheme.org
–  It’s available on linux machines
–  We’ll do some Scheme programming

♦  Supports multiple dialects of Scheme
–  Click on “Language” tab then “Choose Language”
–  Choose “Advanced Student”
–  Use “Show Details” to set output style to “quasiquote”

♦  I’ll demo as we go…

Languages you’ve seen

♦  Declaration int x

–  Introduces new identifier
–  May bind value to identifier, specify type, etc.

♦  Expression (f(x) + 5) / 2

–  Syntactic entity that is evaluated
–  Has a value, need not change accessible memory

» Change to memory is called a side effect

♦  Statement p->next = q
–  Imperative command
–  Alters the contents of previously-accessible memory

8

Languages you’ve seen

A program is…
♦  Sequence of statements

–  “Do this, then do this, then do this….”
–  Update the state of memory until we have the answer
–  Remember x = x + 1 ?

♦  Possibly organized into procedures
–  For convenience
–  For reuse
–  Usually have “parameters” so that they can operate on

different inputs

Scheme syntax: atoms

♦  Symbols
foo bar course
comp80 Computability
1 2 3 7up

♦  Special symbols
(For boolean truth values)

 TRUE FALSE
Historical Lisp: T nil
Scheme: #t #f
DrScheme*: true false

 *student language

9

Scheme syntax: lists

♦  Simple case: list of atoms
 (1 2 3 4)
 (apple orange banana)
 (2 apples 3 oranges no bananas)

–  What do you notice about the contents of lists?
 No distinction between kinds of atoms (no types)

♦  Lists can contain other lists
 ((2 apples) (3 oranges) (0 bananas))
 ((the (quick brown) fox) jumped over (the lazy dog))

♦  Empty list
 () or nil or null

Lists

♦ Very simple data structure
♦ BUT, you can build almost anything

♦ Examples:
– A list (duh)
– A record (or struct)
– A list of records?
– A binary tree?

10

Scheme programs

♦  Lists and atoms
–  Called “S-expressions”
–  S is for “symbolic”
–  That’s it!

♦  OK, what’s the trick?
–  Special way of interpreting lists as code – called eval
–  Idea:

 Given a list (fn a1 a2 a3)
 Treat fn as a function and a1, a2, and a3 as arguments.

♦  Notice: lists used for both code and data

More details

♦  Function application
(fn arg1 ... argn)
–  First, evaluate each of the arguments

(arguments might also be function applications)
–  Second, pass list of argument values to function
–  Notice: prefix notation – function name comes first
 (as opposed to infix notation: x + 3)
–  Many built-in functions
–  Later: make your own functions

11

Special forms: quote

♦  Problem:
–  What happens here: (sum (1 2 3 4))
–  What if I don’t want to interpret the list as code?

♦  Quoting a value
(quote A)  A also written: 'A
–  Does not evaluate A
–  Just returns A as a value

♦  Examples:
(quote 3)  3
(quote (+ 3 2))  (+ 3 2)
'(+ 3 2)  (+ 3 2)
'(To be or not to be)  (To be or not to be)

List manipulation

♦  Two main functions (built-in)

♦  car also called first
–  Returns the first element of the list

♦  cdr also called rest
–  Returns everything except the first element
–  Note: the result is always a list

♦  Use combinations to obtain parts

12

More lists

♦  How do I build a list?

♦  One option: use quote special form
–  What’s the problem?
–  Can’t compute the list parts:

 ‘(1 2 (first (3 4 5 6)) does not return ‘(1 2 3)

♦  Solution: cons function makes a new list
–  Takes an element and a list
–  Makes a new list with that element on the front
–  (cons 1 ‘(2 3)) returns (1 2 3)

♦  Examples…

Other useful functions

♦  Tests (predicates)
–  eq?, equal? Atom/List Equality

 (eq? 3 4)  false
–  atom?, null? Is an atom or null?

 (atom? ‘foo)  true

♦  Logical operators
–  and, or, not Logical operations

 (not true)  false

♦ How do we use these tests?

13

Interesting notes

♦  No assignment
–  Do we need it?

♦  Lists are never actually modified
–  We always get a new list
–  Sounds a little crazy, but it’s very useful

♦  No loops
–  No for, while, goto, etc.
–  Problem for next time…

♦  Notice:
–  If we can build and manipulate lists
–  And lists are used to represent code…

Next time

♦ More on Scheme and intro to names and
types
– Read Chapters 4 and 5

♦ Short Scheme assignment due next
Thursday
– Will be posted on moodle asap
– Will include instructions for downloading and

running DrScheme

