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ABSTRACT

During the past decade, significant effort has been devoted to the design and
analysis of efficient algorithms for computations which are geometric in nature.
Most of this effort has been devoted to problems without direct applications in
robotics. The methods used, however, should have a significant impact upon the
development of algorithmic methods in robotics. A few of the more promising
methods are described below along with some geometric applications.

1. INTRODUCTION

The past decade has brought significant progress in the development of al-
gorithms for solving problems which are geometric in nature (see e. g.,Lee &
Preparata, 1984). Many of these aigorithms depend on methods that were devel-
oped to solve problems in other branches of computer science. We believe that
this trend will continue and that the methodology of computational geometry will
ultimately find significant applications in robotics. Here we present and explain
the methods used in developing three families of geometric algorithms. Two of
these methods involve the decomposition of a problem into subproblems which
can be more easily solved. The third involves transforming a problem in its
entirety to a new format which may be more tractable.

The first of these methods is a hierarchical searching method. Here, a geo-
metric problém is preprocessed to provide a coarse representation of the entire
problem. Search queries upon the whole are then used to localize the region in
which the problem is to be solved. Queries of this type alternate with computa-
tions which yield continually finer descriptions of these continually smaller
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regions. Efficient algorithms result from balancing the two processes of localiz-
ing the search and of increasing the detail. Algorithmic efficiency is then bal-
anced against preprocessing time and storage space requirements. A simple
example of this process is the binary search of a sorted array. Here, the region is
an interval of array indices and the finer description consists of increasing the
density of information.

The second method presented is the divide-and-conquer method. Here, a
problem is broken into subproblems which can be solved recursively. A method
is then defined for combining solutions to subproblems in order to yield a
solution to the entire problem. An extension of sort-merge techniques, this
method has found significant application to all types of algorithm design. Atten-
tion here is focused on issues involved in applying it to problems which are
geometric in nature. In some contexts, these first two methods often work to-
gether. For example, a divide and conquer method (i.e., sort-merge) might be
used to order elements of an array to allow the use of a hierarchical search
method (e.g., binary search). For instance, a Voronoi diagram (Shamos & Hoey,
1975), constructed via divide-and-conquer, yields a planar subdivision that we
could search by the methods of section 2.

Finally, the duality method is one which has been used with success by
mathematical programmers for the past 4 decades. We focus here specifically on
problems involving 2- and 3-dimensional geometries, where duality is used as a
transformation. Given two sets A and B and a query regarding their interre-
lationship, we apply the transform T and answer a different, hopefully easier,
query about the relationship between T(A) and T(B). The form of T and its uses
are described here.

The premise of this paper is that the algorithm for solving a particular problem
is often less important than the methodology which led to the algorithm. We
encourage the reader to look upon this paper as he/she would look upon a user’s
manual for a new programming system. We present methods both in their pure
form and as a means to solving geometric problems. To continue the user’s
manual analogy, the reader might consider the former as an exposition of the
macros which come with a particular system. The latter then provide examples of
these macros in action. The applications we consider depend on geometrics
principles: planar point location, convex hull construction and updating, and
computation of polygon, disk, and half-space intersections. Combining these
principles with relevant sets of facts for robotics should make both our methods
and results useful to robotics workers.

2. HIERARCHICAL SEARCH

2.1. Binary Search

Binary search is an effective technique for locating a particular object within a
search domain, providing that the objects have some inherent ordering. A simple
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FIG. 2.1. Sample binary search tree

example involves the search via random-access probes for an element in an
ordered linear array. The procedure is modeled by the binary tree depicted in Fig.
2.1. The elements of the array are contained in order in the leaves and internal
nodes of the tree. Figuratively, the search begins at the root of the tree comparing
the desired element to the middle element of the array. Either answer will delete
half of the array, and thus half of the tree, from further consideration. The search
moves recursively to either the left subtree, comparing to the first quartile, or the
right subtree, comparing against the third quartile. The search continues until the
search element is found or the frontier of the tree is reached. We might say that
the first question provides a coarse idea of the location of the number (vis a vis
Fhe median) and each succeeding question provides finer and finer detail; that is,
In a binary sense, each question identifies one further bit of the array index of the
number.

When we apply this technique to geometric problems, the process may be-
come somewhat more complicated. Unlike the problem above, many geometric
problems have no obvious one-dimensional ordering leading to an obvious pro-
gression of questions. Preprocessing is necessary to regularize the structure of
the original problem. This yields a coarse description of the problem at which the
search begins. Searching then involves answering questions based on this coarse
description. The resultant answers point us toward further queries based on
slightly more detail within a smaller instance of the problem, and so forth until an
answer is reached. The preprocessing time must be balanced against the search-
Ing time as we describe below.

We consider here a problem to which this technique applies.

Input: A collection of N disjoint polygons in the plane.
Query: For a given point P, find all polygons to which it belongs.

The naiv'e approach to this problem, merely testing the point P against each
polygon in tgm, quickly becomes impractical as both the number of polygons in
search domain and the number of distinct query points increase. We develop a

method of preprocessing the polygons to decrease individual query time for cases
when the number of queries is large.
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At first, we will restrict our attention to polygons which are axis-parallel
rectangles. We represent these rectangles by their lower left and upper right
vertices. Our development begins with a simple algorithm for this case and
works toward a general procedure which applies to arbitrary polygons. All of the

I3

key ideas, the algorithmic ‘‘macro,’’ can be seen in the simple rectangle case.

2.2. Rectangle Search I: Specific Example

We consider the simple example depicted in Fig. 2.2a where all vertices have
integer coordinates. The search domain consists of four rectangles:

R, ={(1,95), 4, N}
R, ={(0,0), 2, 4}
Rz {5, 3), (6, 6)}

={3, D, (7, 2)}

We begin by finding the smallest rectangle, Q, which encloses all of the search
rectangles. In this case O = {(0, 0), (7, 7)}. Together, the boundaries of Q and
the four rectangles form a planar graph, S, with nineteen vertices and twenty-two
edges which subdivides the plane into six regions: the unbounded region, R
which is exterior to Q; the four rectangular regions; and the region we call R,
which is interior to Q but exterior to all four rectangles. Since all of the edges are
finite line segments and thus only one region is unbounded, we can call this
graph a *‘finite planar subdivision’” (see Fig. 2.2b).

In order to determine which, if any, of the four rectangles contains the query
point P = (x, y), we first determine whether P lies in the unbounded region R by
making four comparisons to check whether either x or y is less than O or bigger
than 7. If so, our search terminates. Otherwise, we need to determine the region
interior to S which contains P. Ideally, a few quick comparisons would localize
our search further, in a pattern similar to one-dimensional binary search. Unions
of regions of the planar subdivision, however, produce awkward (i.e., nonrec-
tangular) shapes against which P cannot easily be tested. We need to restructure
the search domain. Since all current vertices have integer coordinates, we may
refine the subdivision S, to a new planar graph S, which forms a complete grid of
unit squares. As each of these squares is a subset of exactly one of the regions in
S, the representation we choose for S, will include a pointer for each square face
to its *‘parent’’ in § (see Fig. 2.2c).

At first, the task of locating P in one of the forty-nine regions of S, seems
more complicated than the original problem. The regular shape of the regions,
however, benefits us. If we delete an interior vertex, T, and all of the edges
adjacent to it, four squares are merged to form one larger square. If we knew that
P were included in the larger square and we knew the coordinates of the point 7,
we could quickly determine to which of the original four squares P belonged.

Therefore, we will create a new subdivision S, using the following procedure:
sweep a vertical line left-to-right across the plane; stop every second time that it
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intersects (contains) vertices and vertical edges of S,; move bottom-to-top along
the stopped line, deleting every second vertex and its adjacent edges; where
necessary, add edges to preserve the boundary of Q. Here, both coordinates of a
deleted vertex will be odd numbers. In most cases, four squares will be merged
to form a larger square, but along the upper and right boundaries of S, two or
even no squares may merge (see Fig. 2.2d). The representation of S, will
associate a tag with each region which not only points to its parents, or origina-
tors, in S, but also identifies the vertex they all share.' This process cuts the size
of the search domain from forty-nine internal regions to sixteen. If we repeat the
process, we achieve a subdivision S, which has four internal regions (Fig. 2.2¢)
and then a subdivision §; with just one (Fig. 2.2f). The sets, S,, S,, S,, S;
constitute a four-level hierarchy. We measure the size of each subdivision, S;, by
the number of finite regions it contains:

lsol = 49; |S|| = 16; |Szl =4 |S3l =1

Our algorithm to determine which of the original rectangles contains P pro-
ceeds as follows: make at most four comparisons to determine whether P lies in
the interior or exterior of S5; if P lies in the exterior, return the null symbol J; if
P lies in the interior of S5, compare x and y against the two coordinates stored in
S5 to determine which region in S, contains P, then test P against the coordi-
nate(s) stored there to determine which region in S, contains P, test P against the
coordinate(s) stored in that region to determine which square in S, contains P;
look up the original region, R, to which that square belongs; if R is one of the
rectangles, R, ..., R,, return the number of that rectangle; otherwise, return &J.
Fig. 2.2g demonstrates the path followed through the hierarchy for the case
where P = (11/2, 3/2). Four comparisons are executed at the root, followed by
two more at each internal node in the tree for a total of ten comparisons.

As already mentioned, this algorithm successively considers finer details
(rectangles of smaller area) as it narrows the search domain (by eliminating sets
of rectangles).

2.3. Rectangle Search I: General.Case

We now extend the algorithm to the more general case where the search domain
consists of N axis-parallel rectangles, R, R,, ..., Ry, whose vertices have real-
valued coordinates. First, we project all of the vertices onto the x-axis, yielding
at most 2N distinct values. Without loss of generality, we assume that the 2N
values xg, X, X5, ..., X,y _,, are distinct and represented in increasing order.
Similarly, project all of the vertices onto the y-axis, achieving an ordered list y,,,
.-y Yon—- Note that the values x, and y, need not originate with the same

The term “‘parent’” is used loosely, as a region in S, generally points to four distinct squares in
So. In cases of multiple parenting, we shall henceforth use the term ‘‘originators.’’
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vertex, and x, and x, need not define the x-extent of a single rectangle. The
smallest rectangle which circumscribes R, ..., Ry is @ = {(xo, ¥o)» (ton >
Yan— )} S is the planar graph formed by the boundaries of Q and R, ..., Ry;
R, ., | is the region exterior to Q; and R, is the region interior to Q but exterior to
R,, ..., Ry (see Fig. 2.3a).

To achieve the regular structure needed for S, proceed as follows:

1. foreachx;, 0 =i=2N — 1, draw the line segment from (x;, yo) to (x;, yop_ ,);
2. foreachy, 0 <i=2N — 1, draw the line segment from (x,, y,) to Con— 1595
3. reinterpret the resulting picture as a planar graph, S,,.

Since Q was divided at each x-coordinate and y-coordinate which represented a
vertex of the original rectangles, each one of the regions (faces) of S, is a subset
of exactly one of the regions, Ry, ..., Ry. Thus, the representation of each face in
So will include a pointer to its parent in S.

Despite the fact that the regions in S, need not be squares, all interior vertices
of S, will have degree four, as in the previous example. Thus we can use the
procedure defined earlier to create subdivisions S, S,, S5, ..., each having fewer
faces than the previous one. We continue until we reach an S, which has a single
finite region identical to the bounding box Q, (see Figs. 2.3b and 2.3c).

With the hierarchy, S, ..., S,, in place, we can determine which of the
original rectangles contains P by the following procedure:

Begin
- decide whether P lies in the bounded or unbounded region of S,
. if P is in the unbounded region, return J and stop
- V,u—y < the vertex associated with bounded region of S,
fori<m—1to1 step —1
begin
5. test (x, y) against v; to determine which of its originators in S,
contains P
6. v;_, < the vertex stored with that originator
end;
7. look up in S, the original region R; to which v, points
8. if j = 0, then return J, else return j.
End.

LN -

The set-up phase of the algorithm, steps 1-3, and the interior of the loop, steps
5-6, each require constant time.

Thus, the time complexity of the algorithm is linear in m, the number of times
the algorithm executes the inner loop. If we reconsider Fig. 2.3b, we can see that
S contains (2N — 1) = j2 regions (|S;| = j2). In the process of creating S, we
eliminate the vertical divisions for |j/2] values of x. In like fashion, we delete the
horizontal divisions for |j/2| values of y. Thus, S, must contain ([j/21)? = k2
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regions. In the same manner, the process of creating S, removes | k/2 horizontal
and vertical divisions, so (|S,] = (Tk/21)2 finite regions. Since S, contains but
one finite region, m = [log (2N~ 1)1.2

Thus, in determing the region containing P, this algorithm performs 4 +
2[ log 2N - 1)] comparisons, or O(log N) comparisons. The naive algorithm
requires 4N comparisons, or O(N) comparisons. Thus, even for small N (e. g.
N = 3) this algorithm is preferable, provided the necessary hierarchy can be
created easily. Given that S, contains 4N? vertices and (2N — 1)? regions,
however, just the representation of the hierarchy must take Q(N?) time. As a
result, this algorithm has value only when a large number of points P need testing
and when the size of N does not make N2 prohibitively large.

2.4. Rectangle Search I

The hierarchical algorithm described above actually subdivides Q into more
regions than necessary. Our second algorithm offers only a slight. improvement
in the worst-case space requirement, but is far more efficient on average and
should make the later exposition clearer. In the above, all of the vertices of the N
rectangles, Ry, ..., Ry, are projected onto both the x- and y-axes, creating
2N — 1 finite intervals in each direction. Then, added horizontal and vertical

2Note that log x here always means log; x.
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FIG. 2.4. Decomposition for rectangle search II

segments create a total of (2N — 1)2 distinct regions (see Figs. 2.3a and3b). Now
we add only those vertical segments containing an edge of a rectangle. The new
S, contains only the actual intervals along the x-axis, rather than the entire
resulting graph. In other words, Sy = {[xg, x,1, [x;, Xo1, -+, [Xon — 25 Xon — ,]}.
The sets, M,, ...M,y _,, consist of the distinct vertical intervals represented in
the vertical slab defined by each respective horizontal interval. In the example of
Fig. 2.4,

M, = {[Vov )’|]v [V,, )’5], [st yzN—I]}’
M, = Do» 11 Dy ¥k LVS’ Yon—3ds w3 Yon -2 Dan 2 Yaw- Jh
M, = {Dos yzN—3]~ D)ZN—J‘ yzN—z] b’zy—z» yzN—l]}v

Moy = Do 31 s Yals s Y2N_|j}-

Each interval of M, has a tag identifying the original region R, _r R.N which it
represents. The size of M,, |M], is defined as the number of finite intervals it
contains. |S,| is defined similarly. .

Now we search the two dimensions sequentially. Instead of defining regions
of positive area, the new S, contains only intervals. First, we need to definfa a
hierarchy of sets S, ..., S,,, which will enable us to determine quickly YVh.lCh
interval of S, contains the x-coordinate of P. Then we need to deﬁr}e a similar
hierarchy for each of the M, ..., M,, _ . Thus, when the correct x-interval h?s
been chosen, we select the corresponding M,. A search of that hierarchy will
determine the y-interval containing P and thus the original region to which P
belongs.
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Since the processes are identical, we describe the merge and search methods
for the S hierarchy only. Recall, that S, = {[xo, x, 1, [x,, x,], [, X3, .., [x,, 2
X, 1]}. Beginning with x,, we select every other endpoint. In each case, we
will merge the two intervals sharing that endpoint and insert the new interval into
the set S, . In the representation of S,, however, each interval will have a pointer
back to its originators in S, as well as a tag identifying the endpoint which the
originators share. We will reiterate this process until we have a hierarchy of sets,

[xo, X1, [x, £ 2% A [lev—zv Yoy 1}

Sy = {
s {lxo0. %51, by 2], ooy N -4 Xon—als ’sz—z' Koy}

Sy = {Ixov Xon - I,}

As before, m = [ log 2N — 1) ].

The search process for a point P = (x, y) begins by determining whether x lies
in the interval [x,, x,, _ ] (two comparisons). If not, we are done. If s0, then we
look at the tag value stored in S, and determine to which originator x belongs
(one comparison). We repeat the process, until we know which basic interval in
So contains x. (So far we have completed 2 + [ log 2N — 1) } comparisons.) We
select the appropriate M, and perform a similar search in its hierarchy. Since M,
has at most 2N — 1 intervals, this second phase search requires at most 2 +
[ log (2N—1) 1 comparisons. When we have isolated the appropriate interval at
the bottom layer, we can read off the original region which contains P.

This algorithm preserves the O(log N) query time of the previous example,
but does not achieve the desired reduction in worst-case preprocessing time. The

example depicted in Fig. 2.5 maximizes the total number of intervals defined
over all of the M,:

2N -1 N—-2

2 IM|=223 @+1)+20N-2+@N - 1)

i=1 i=1

N-2

=4 2 it2N-D+2N -2+ QN - 1)
i=1

AN = 2)N = 1) + 8N — 9

IV + 2N — 13

Il

Since |S] = 2N — 1, the bottom level of this algorithm contains a total of 2N? +
4N — 14 intervals. The previous algorithm has 2N — 1)2 or 4N2 — 4N + |
regions at the bottom level.

In the worst case, the second algorithm represents insignificant improvement;

]

both algorithms may require 8(N?) time to represent their bottom level objects
and thus may require X(N?) preprocessing. The example depicted in Fig. 2.5,
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however, is quite unusual. On average, the second algorithm should substantially
outperform the first. It also describes a *‘slabbing technique’” of searching coor-
dinates sequentially which is a valuable ‘‘macro’” in computational geometry. In
addition, it helps to clarify the criteria for effective hierarchies.

2.5. Rectangle Search llI: Specific Example

In each of the cases above, the regularization process created too many new
regions. The result was an algorithm using quadratic space. Our goal is to
develop an algorithm which requires subquadratic preprocessing time and stor-
age space while maintaining an O(log N) query time. What we need is a subdivi-
sion which creates as few new regions as possible while having uniform faces
conducive to hierarchical abstraction. Euler’s formula shows the feasibility of
this approach: a planar graph on n vertices can have at most 2n — 4 regions. Thus
a regularization process which adds no vertices can add only a linear number of
new regions.

Let us return to the four rectangle example of Fig. 2.2a. This time, we choose
a large triangle Q which contains all of the rectangles in its interior. S is defined
as the finite planar subdivision formed by the boundaries of Q and the four
rectangles (see Fig. 2.6a). All vertices have alphabetic labels. Instead of adding
vertical and horizontal segments which must create new vertices, we add a
sequence of disjoint edges between preexisting vertices until every region is a
triangle (see Fig. 2.6b). In the representation of the triangular subdivision, S,
each face is associated with an integer which identifies its parent in S.

Limiting the number of new regions has sacrificed some of the uniformity. In
the S, of algorithm I, each face was rectangular and every interior vertex had
degree four. To create S;, we chose a collection of independent (i.e., no two

x=-|

Finite piariar subdivision
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vertices share an edge), interior vertices from S,. The deletion of each of these
vertices with its adjacent edges automatically produced a new rectangular sub-
division. In Fig. 2.6b, consider the five independent vertices A, E, L, N and P.
Vertex A has degree 3, while N has degree 4, E and L have degree 5, and P has
degree 6. Thus, the deletion of these vertices and their incident edges will
produce a new triangle, a quadrilateral, two pentagons and a hexagon (see Fig.
2.6¢).

The success of the hierarchical approach depends on having the same type of
subdivision at each level in the hierarchy. Consequently, we form a triangular
subdivision S, by retriangulating the quadrilateral, hexagon and two pentagons
using the dotted segments shown in Fig. 2.6¢. Note that the interior vertices of § |
have numeric labels, while the vertices of So are labeled alphabetically. We shall
continue to alternate alphabetic and numeric¢ labels throughout the hierarchy to
aid in distinguishing between adjacent levels.

The subdivision S, contains two kinds of triangles. The triangles in S, which
are identical to triangles in S, are considered ‘‘old’’ triangles. Each ‘‘old”’
triangle will contain a *‘triangle pointer’’ to its duplicate, or ‘‘parent,’” represen-
tation in S,,. The subdivision S,, however, has ten fewer regions than does S,,.
The three triangles in S, sharing vertex A have been replaced by a single triangle
in §; the four triangles sharing vertex N, by two triangles; the six triangles
sharing vertex P, by four triangles; and the five triangles sharing E and L
respectively, by three triangles. The representation of each of these “‘new’’
triangles contains a ‘‘vertex pointer’’ to the respective vertex in S,,.

The location of a point P in S, is easily derived from its position in §,.
Suppose P lies in the triangle of S, joining vertices 1, 2, and 3, denoted A123.
Then P also lies in ABCD of S, and belongs to R,. If P lies in A234 of S|, then it
also lies in the pentagon 23456 formed by the deletion of vertex E from S,. We
test P against the edges EC, ED, EF, EG and EH to determine the angle at £
containing P. Depending on P’s location in A234, P lies in one of ACED,
ADEH, AHEG, AGEF, or AFEC. Consequently, P might lie in either R, or R, .

We repeat the process, deleting vertices 1, 4, 6, and 10 and retriangulating to
form a subdivision S, with 8 fewer faces. The deletion of A, C, and G produces
S3; deleting 1 and 3 leads to S,,; deleting vertex B produces Ss; finally, deleting
vertex 1 yields S¢ (see Figs. 2.6d—h).

" Given P = (3, 6), the algorithm follows the search tree depicted in Fig. 2.6i.
First, we confirm that P lies in the interior of Se- Next, P is found to lie in AU1W
(by testing the ray 1P against the edges incident to vertex 1 in S5). That triangle
appears unchanged in S, except for the renaming of a vertex, so P € A UAW.
A UAW in S, points to the vertex 1 in 3. Consequently, we consider the four
triangles in S; which share vertex 1 and determine that A12W contains P.
Moving to S, an examination of rays CB, CD, and cw proves that P belongs to
AWCB. Subsequently, we determine that P lies in A245 of § 1 and in AEHG of
So- Thus P belongs to R,. This particular example required a total of 22
comparisons.
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For the small example we have been considering, as we might expect, this
new algorithm runs more slowly than either algorithm I or the naive algorithm.
For a problem with only four original regions, the hierarchy contains seven
levels and a cumulative total of 89 regions. Analysis of the algorithm in the
general case, however, proves that it is asymptotically superior to the naive
algorithm and the two other rectangular algorithms defined above. In addition,
we note that nowhere did the algorithm depend on the rectangular shape of the
original objects; thus the algorithm applies equally well for a search-domain
consisting of general polygons. Furthermore, the searching done by the al-
gorithm was hierarchical in nature, exactly as was the searching done by the first
two algorithms.

2.6. General Polygon Search

In this case, our search domain consists of irregularly shaped polygons, rather
than rectangles. Since a given polygon could have an unlimited number of sides,
we will measure the search domain by the total number of vertices which it
contains, rather than by the number of polygons. Similarly, at each level in the
hierarchy, |S,| will represent the number of vertices S, contains, rather than the
number of regions.

The first task is to find a triangle, Q, which surrounds all of the polygons. We
use the following approach: Scan all the vertices to determine x,, the smallest
x-coordinate; y,, the smallest y-coordinate; and by, the largest value of y + x.
The three sides of Q will lie on the linesy =y, — I, x=x,— landy = —x + b,
+ 1. Thus Q is an isosceles triangle with a right angle at (x, — 1, y, — 1). The
union of the bounding triangle Q and the given polygons forms a planar graph S
of n vertices (three more than the number of original polygonal vertices). We
triangulate S arbitrarily to form S, (see Figs. 2.6a and b). The triangulation of a
planar subdivision on n vertices, S, to form a triangular subdivision, S, requires
at most O(n log n) time.

The efficiency of .this algorithm will depend heavily on both the number of
vertices eliminated at each stage of the hierarchy (number of levels necessary)
and the degree of each vertex eliminated (the number of originators a single
triangle might have). We will need to make wise choices. Being fully triangu-
lated, S, has 3n — 6 edges and 2n — 4 regions by Euler’s relation. Since every
edge is incident on two vertices, the average vertex degree must be (6n — 12)/n,
or somewhat less than 6. To achieve this average value, at least half of the
vertices must have degree smaller than 12. Let V include those vertices of S, with
degree < 12. Thus, |V| = n/2. Let us choose an independent subset V' of V. A
straightforward elimination procedure applies. Choose any vertex v € V and place
itin V'. Then delete both v and any vertices adjacent to v from V. Since v has at
most 11 neighbors, no more than 12 vertices are deleted from V. We can repeat
this process at least |V|/ 12 times. Consequently, when V is empty, V' will contain
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more than n/24 independent vertices. Therefore, let each §; be achieved by
deleting independent vertices of degree < 11 from § ;—1- The process stops at S,,,
which has 1 triangle.

With the hierarchy, S, ..., S,, in place, which we will call an S-tree, we can
determine which of the original polygons contains P by the following procedure:

Begin
decide whether P lies in the bounded or unbounded region of S,
if P is in the unbounded region, return & and stop
Vi1 < Vertex associated with bounded region of S,
tm—— 1 < @
fori «<~m — 1to I step-1
6. if v, # J then begin (“‘new’’ triangle)
7) determine with triangle of S, at v, contains P
8) v;_, < vertex stored at that triangle
9) t;_, < pointer stored at that triangle
end
10. else begin (“‘old™ triangle)
1. v;_, < vertex stored at ¢,
12. 1;_, « pointer stored at ¢,

M.

end

13. look up in S, the original polygon R; to which triangle f, belongs.
14. if j = 0, then return J, else return j
End

The set-up phase of the algorithm, steps 1-4, can be completed in constant time.
Since the degree of v; is at most 11, each iteration of the loop, steps 612, can
require at most 12 comparisons.

Thus, the time complexity of the algorithm is linear in m, the number of times
the algorithm executes the inner loop. Recall, however, that S, has 1 triangle
and 3 vertices. Consequently, |S,,| = 3 =< (23/24)" |S,| = (23/24)"n. Therefore,
m = (log n — log 3)/(log 24 — log 23). Using the convenience of **O’’ notation,
we may say that m = O(log n). Thus, the algorithm performs at most 12
qompaﬁsons at each of O(log n) levels. So the search process takes O(log n)
time.

To evaluate the amount of preprocessing time the algorithm requires, first let
us consider the amount of time and storage required just to represent the S,. S,
has n vertices, three more than the actual search domain. Thus the total number
of vertices (which is linear in the number of edges and regions) represented
throughout the hierarchy is approximately

m 2, el 231_
[Sol 2 (5)i<n X (5 =2n

i=0

Thus, this portion of the problem requires only linear time and space.
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The time required to prepare the representation of S; from that of S; _ | or the
representation of S, from S depends on the complexity of the triangulation
process. As we stated above, the latter process, the triangulation of S to form S,
requires at most O(n log n) time. In the former case, the vertices to be deleted can
be determined in the manner described above in time linear in |S;_;|. When a
vertex is deleted, the resulting polygon of fewer than 12 sides can be retriangu-
lated in constant time. Thus, given S, creating the remainder of the S-tree (S,
..., §,,) takes linear time.

Given a fixed collection of N disjoint polygons having a combined total of n
vertices, the hierarchical algorithm we have described creates an S-tree in time
O(n log n) and space O(n) which enables any subsequent query to be answered in
time O(log n). Throughout the development of this algorithm, no restriction has
been placed on the number of vertices per polygon or on the shapes permissible.
A naive approach to the problem would require only O(n) time, so it remains
preferable for cases where few queries are anticipated. As the number of queries
grows, however, the hierarchical approach becomes vastly superior.

In the sections below, we shall assume that a constant bounds the number of
vertices per polygon, making n = 6(N). In this case, the naive approach requires
only time O(N) to complete a query. In the general algorithm above, n may be
replaced by N in each of the complexity results. The creation of an S-tree on N
polygons, an S-tree of size N, requires preprocessing time Py(N) = O(N log N)
and space S¢(N) = O(N). Although an S-tree is formed only after the triangula-
tion of the entire search domain, we may say that each of the N polygons costs an
average insertion time of /g(N) = P¢(N)/N = O(log N). A query costs Q¢(N) =
O(log N) time.

2.7. Dynamic Polygon Search

An interesting addition to the polygon search problem is to allow the search
domain to change over time. The S-tree is unsuitable for this problem where
polygons are added one at a time with queries interspersed. As the triangulation
of S cannot be modified locally, the insertion of the N** polygon would entail
discarding the old S-tree on N — 1 polygons and building a new S-tree of size N.
This is likely to be less efficient than the naive approach, since inserting N
polygons sequentially into any initially empty structure would cost an excessive
amount of time:

N

O( 2, ilogi) = O(N? log N).

i=1

Polygonal search, however, does not require that all of the data be retained in
a single structure. If some of the polygons were represented in one S-tree and the

2. COMPUTATIONAL GEOMETRY 61

rest in another, the polygon containing P could be identified by forming the
union of the results of searching the two S-trees independently. Thus instead of
dismantling an entire S-tree in order to insert the N** polygon, we may simply
construct a new S-tree for that polygon. A subsequent query on the search
domain will necessitate searching both structures in time O(log(N — 1) + log 1)
= O(log N).

A data structure for the insertion-dynamic polygon search problem may con-
sist of a collection of S-trees, rather than a single such tree. Nonetheless, adding
a new S-tree upon each insertion does not work. Although the insertion time
would remain constant, queries after N insertions to an initially empty structure
would require O(N) time. What is needed is a method which balances the cost of
creating large S-trees against the cost of searching a large number of trees.

An insertion strategy based on binary counting, which we will call a binary
transform, produces a feasible data structure for insertion-dynamic polygon
search, the DPS. The first polygon to join the search domain occupies its own S-
tree. Upon the insertion of the second polygon, a single S-tree of size 2 is
formed. The third polygon forms its own S-tree, but the insertion of the fourth
polygon prompts the formation of a single S-tree of size 4. The histogram of Fig.
2.7 illustrates the continuing pattern. A DPS of size 7 consists of three S-trees of
sizes 1, 2, and 4, respectively. All three structures are replaced by a single S-tree
of size 8 upon the next insertion. In general, if N is represented in binary as
(b,b,,_ - - -by), a DPS of size N will contain an S-tree of size 2/ for those i with
b, =

A DPS allows a balance between insertion time and query time. First of all,
the DPS of size N contains no more than log (N + 1) S-trees. As no S-tree has
size greater than N, a search of one tree requires at most O(log N) time. Hence, a
search of the entire DPS can use at most O(log2 N) time.

Analysis of the insertion time is more difficult. Adding the 15% polygon
entails building an S-tree of size 1 at almost no cost, while the 16 polygon
necessitates the construction of new S-tree of size 16. Instead of figuring the

1
T
A1

L
[ 12 24
NUMBER OF POLYGONS IN DPS

DECOMPOSITION INTO S-TREES

FIG. 2.7. Binary transform
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insertion cost of a polygon, I,,,5(16), as the immediate expenditure of time
associated with adding it to the DPS, however, we will assign to each polygon its
share of the cost of building every S-tree to which it ever belongs. Of the
polygons in a DPS of size 16, the first polygon to join the sear’ch domain has
belonged to the largest number of distinct S-trees: one each of sizes 1, 2, 4, 8,
and 16. Its cost must bound the average insertion time. Py(N), however, grows at
least linearly in N, and thus / s(N) = P¢(N)/N is monotone nondecreasing. There-
fore, we can bound /,,,4(16) as follows:

Inps(16) =< I1(1) + I(2) + I(4) + I(8) + 1(16)
4

Il

> 12
i=0

IA

4
> 1,(16)
i=0

= 51(16).

In general, no element of a DPS of size N will have belonged to more than (1 +
log N) different S-trees over the life of the algorithm. We may conclude:

log N

IppsN) = X 1,(2)) = (I + log N) I(N) = O(log?N):
i=0

Ppps(N) = N Ippg(N) = (1 + log N) Pg(N) = O(Nlog?N).

Thus the average insertion time is identical to the query time. As ea.ch polygon is
represented in exactly one structure, the space requirements remain O(N).

The creation of the DPS represents a macro applicable in other contexts. The
next subsection presents a general development of this macro.

2.8. Decomposable Searching Problems

General polygon search is only one example of a class of searching problems
suited to the dynamization process defined above. That process depended on the
fact that the correct response to a query over a search domain D could be formed
by merging the responses to separate queries over subsets of D using Constflnt
time. The problems having this attribute are called ‘‘decomposable searching
problems.”’

Many common problems belong to this class. An element s belopgs to a set
AU B if s belongs to A or s belongs to B. The nearest neighbor to a point x in a set
A U B is the closer of its nearest neighbor in A and its nearest neighbor in B. The
smallest number in A U B which is larger than a given number x is equal to the
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smaller of the two numbers satisfying this criterion separately in A and in B. The
number of points in a set A U B whose x-coordinate has a given value x, equals
the sum of the number of such points in A with the number of such points in B.

Once we have a static data structure and a static algorithm for any one of these
problems, we can apply the binary transform to achieve an insertion-dynamic
structure and algorithm. At any point, the insertion-dynamic algorithm will
Query at most log(V + 1) of the static structures, implying that Op(N) = Q(N)
log (VN + 1), as long as Q((N) is monotone nondecreasing. When we have a
insertion-dynamic structure of size N, each element of that structure has be-
longed to at most (1 + log N) structures during the course of the algorithm.
Provided that P(N) grows at least linearly with N, each element’s cost is bound-
ed above by (1 + log N) I5(N), insuring that P,,(N) =< (1 + log N) P¢(N). Each
object is stored in only one static structure. If we assume that the static algorithm
requires at least linear space, then we may conclude that the space requirements
have remained unchanged: S,,(V) < s(N). In summary, an insertion-dynamic
algorithm achieved by applying the binary transform to a static algorithm
achieves the following results:

Op(N) = Qy(N) log (N + 1)
Pp(N) = P¢(N) (1 + log N)
SpN) = S4V)

Due to these performance results, we call the binary transform an admissible
(log N + 1), 1 + log N) transform.

The chief asset of the binary transform is that it evenly assesses an O(log N)
dynamization penalty to the query and average insertion times. Other transforma-
tions trade improved query time for slower overall processing, and vice versa.
We will consider two examples: the triangular transform and the dual triangular
transform.

The triangular transform allows the insertion-dynamic structure to contain at
most two static structures at a time. Consequently, Op(N) =2 Qy(N). To achieve
this limit, it relies on the sequence of triangular numbers, T,=i(i+ 1)/2fori=
1, 2, ... If the search domain has size N, let T, be the largest triangular number
less than N. Then an insertion-dynamic data structure of size N contains one
static structure of size T; and one of size N — T;. Suppose one more element is
inserted. If N + | = Tj .+, then the previous two structures are discarded and a
single structure of size T;, iscreated. If N + 1 < T; .\, then just the structure
of size N — T; is dismantled, arid those objects together with the new one are
formed into a new static structure of size N + |1 — T;. [See Figure 2.8].

To assess the total processing time, first consider an example where T = 15
elements belong to the data structure. Then, over the course of the algorithm, the
first and second elements to Join the search domain have belonged to five distinct
Structures: one each of sizes 1, 3,6, 10, and 15. The third element has belonged
only to structures of size 3, 6, 10, and 15. The fourth element, however, has
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belonged to structures of size 1, 2, 6, 10, and 15. We can read off this history by
tracing a horizontal line through the histogram of Fig. 2.8 at a given height.
Examining the histogram shows that no element has belonged to more than five
structures.

In general, after 7, = N elements have been inserted, each element has
belonged to at most j structures. By the definition of the triangular numbers, we
may conclude that j < V2N, and thus, P;,(N) = P¢(N) V2 N. Consequently,
the triangular transform may be described as an admissible (2, V2 N) transform.
The query time has suffered only a constant dynamization factor, while process-
ing time is slower by a factor of O(VN), making this transform a good choice for
cases where we expect a large number of queries relative to insertions.

The reverse triangular transform, or the dual triangular transform, allows each
element to belong to at most two static structures over the life of the algorithm.
As each of these structures must have size less than or equal to N, I,(N) = 2
I¢(N) and P,(N) = 2 Py(N). If the search domain contains N = T; objects for
some j, then the data structure contains one structure of size i forall | <i =< J. If
N > T, then the structure contains one structure of size i forall 1 < i < jin
additionto N — T; (= j) structures of size 1 (see Fig. 2.9). Thus, at any time, the
insertion-dynamic structure contains at most 2j < 2 V2 N structures, ensuring
that Q,(N) = Q4(N) 2 V2 N. In summary, the dual triangular transform is an
admissible (2 V2 N, 2) transform.

The three transforms we have discussed have distinct advantages and disad-
vantages. The binary transform is best in cases where a comparable number of
insertions and queries are expected. The triangular transform and the dual tri-
angular transform are best, respectively, when a greater proportion of queries or
a greater proportion of insertions are expected. There are an unlimited number of
other transforms available. For example, in both triangular transforms, the
number 2 was arbitrarily chosen as the limit for the number of active structures
and as the limit on the number of structures per single element over time. The
choice of the number 3 instead, or any other integer, would have led to different
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transforms. In fact, we may have a transform isomorphic to any counting
scheme.

These transforms may be applied to any decomposable searching problem
and the worst case complexity results we have derived will always hold. Fo;
some specific problems, however, the dynamization penalties will not in fact
accrue. It may be possible, for example, to merge some of the static structures
vylthout completely dismantling them. Similarly, a tighter analysis of the query
time may be possible. Nonetheless, tne upper bounds readily available as a res alt
of using a standard transform have great value. It is impossible, however. to
create efficient transforms applicable to all decomposable searching proble:ms
which will convert static algorithms to dynamic algorithms allowing deletions.

2.9. Notes

Garey, .Johnson, Preparata, and Tarjan ( 1979) produced an algorithm for tri-
angulating monotone polygons in linear time. Chazelle and Incerpi (1984) have
developed a new scheme for decomposing a simple polygon into a collection of
monqtone polygons. A modification of that approach leads to an O(n log n)
filgonthm for decomposing all of the faces of a planar subdivision on n vertices
Into monotone polygons (Chazelle, 1984b).

The problem solved here by hierarchical search was first stated by Knuth
.(1973). A first solution was proposed in Dobkin and Lipton (1976). This paper
introduced the notion of x-axis and y-axis projection which have proved useful in
other contexts (Bentley & Ottmann, 1979; Brown, 1981; Shamos & Hoey
1976). The topic of planar subdivision search was extended by Preparata, 1981j
LlptOI:l & Tarjan, 1979; Lipton & Tarjan, 1980; Kirkpatrick, 1983. Our develop:
ment 1s most similar to that of Kirkpatrick (1983). A similar technique was used
in (Dobkin & Kirkpatrick, 1985).

. The dynamization techniques and the classification of decomposable search-
Ing problems are due to Bentley and Saxe (Bentley, 1979; Bentley & Saxe,



66  DOBKIN AND SOUVAINE

1980). Some of the methodology introduced here is also seen in the order-
decomposable methods mentioned in the next section.

3. HIERARCHICAL COMPUTATION

3.1. Divide-and-Conquer Computation

The most powerful technique in algorithm design is the divide-and-conquer
technique, as it can be applied to problems of vastly different structures. The
sorting of natural numbers is a classic example of the divide-and-conquer pro-
cedure. The goal is to sort a set of n integers. To do so, we divide the original set
into two equal or nearly equal subsets. Each subset is sorted (by applying the
method recursively) with the results (two sorted sets) merged to form a sorted
sequence describing the entire set.

A simple example involves producing an ordered list of grades from an
alphabetized list of students and their averages. A divide-and-conquer tree begins
as a binary search tree, with the original objects ordered in the leaves and with
each non-leaf node containing a pointer to the largest element in its left-subtree
(see Fig. 2.10). In binary search, however, we begin at the root and descend the
tree, considering one node at each level and deciding to progress to either the
right or the left subtree. The leaf reached determines the solution. A divide-and-
conquer algorithm involves both descending and ascending the tree, visiting each
node in each direction. The division is done as we pass down the tree, dis-
tinguishing different levels in the hierarchy. For any nonleaf node, the algorithm
sorts its left subtree and then sorts its right subtree. The conquering part of the
computation is done as we pass up the tree. The algorithm merges the sorted
sequences stored at the children and stores the result of the computation at the
given node. At the conclusion, the complete sorted sequence is stored at the root.

We may choose how much space we wish to utilize during the course of this
algorithm. When we merge two sequences, we create new storage for the result.
We may either retain the original sequences or destroy them. In this first case,

73,79,82,85,87,92,95,98

73,79,85,92 82,87,95,98

sc/\>c M >M

79,92 73,85 95,98 82,87

<A >A SAF <J >J 57\“’
FIG. 2.10. Sample divide-and-con-

A,79 €92 F,85 H,73 4,98 M5 P82 T,87 quer tree
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the algorithm will need O(n log n) space, whereas the second case uses only
linear space. Investing the extra space allows easy retrieval of previous states of
the computation. In some applications, the ability to retrace previous steps easily
has enough significance to outweigh the cost in space. In general, however, the
linear-space approach is preferable, as it is here.

The efficiency of the algorithm depends on the amount of work required at the
leaves of the tree, the complexity of the merge phase, and the overall size of the
tree. Typically, this yields a recurrence of the form T(n) = 2 T(n/2) + M(n) with
T(1) = C. In this case, no work is necessary at the leaves (T(1) = 0), and the
merge algorithm is linear in the size of the subtree: M(n) = n — 1. Thus T(n) =2
T(n/2) + n — 1 = O(n log n).

Having briefly described the divide-and-conquer method, we now consider its
specialization to the hierarchical methods best suited to geometric problems. Not
only do they apply to static geometric problems, but they also serve as a basis for
dynamization techniques which apply to a large subclass of geometric problems.

3.2. Two-dimensional Convex Hulls

Over the years, numerous algorithms have been developed for the computation
of the convex hull of a set of N points in the plane (see Chapter 5). The algorithm
we describe here demonstrates the hierarchical strategy of computing. If the
points have been sorted according to the value of their x-coordinate, the set can
be divided in two at the median value. The division step now involves computing
the hulls of the left and right collections of points. Conquering involves merging
the left and right hulls.

Merging two disjoint convex hulls requires determining two distinct segments
which are tangent to both hulls and then deleting all vertices and edges within the
Quadrilateral defined by those tangent segments (see Fig. 2.11a). To simplify our
exposition, we consider only the problem of finding the lower tangent and
maintaining the *‘bottom convex hull’> or *‘bc-hull.’’ The be-hull contains the
bottom part of the convex hull, the portion extending from the leftmost vertex to
the rightmost vertex in the counter-clockwise direction. The be-hull, however,
augments the bottom part of the hull with vertical rays in the positive direction at

FIG. 2.11. Merging two convex
hulls versus merging two be-hulls (a) (b)
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its two endpoints.3 (See Fig. 2.11b.) Once two be-hulls have been merged and
the corresponding two top convex hulls (tc-hulls) have been merged, the com-
plete convex hull can be formed in constant time.

Given two bc-hulls A and B, each consisting of N vertices with A lying to the
left of B, we divide the merge process into three parts. First, we seek a
*‘bridge,”” i.e., a segment tangent to both A and B. Any vertex on either hull
could be an endpoint of the bridge, or a “‘bridge point.”” A variant of binary
search is used to locate the actual bridge points. Once the bridge points a and b
have been identified, we split A at @ and B at b. Finally, we form a new hull by
concatenating the left portion of A, including a, and the right portion of B,
including b. In the chain of vertices representing the new hull, a and b are
adjacent to each other, indicating the bridge segment.

The vertices of each bc-hull, C, are represented in the leaves of a concatena-
ble queue. The term ‘‘concatenable queue’’ denotes a binary search tree which
has been implemented in such a way as to enable efficient searching, splitting
and concatenating. The concatenable queue, or Q-structure, retains all of the
features of a binary search tree; each nonleaf node a still contains a pointer,
Vlal, to that vertex in its left subtree having the largest x-coordinate. Thus the
middle vertex of the portion of a be-hull represented by a single subtree can be
identified in constant time. We associate with 0., the Q-structure representing
the be-hull C, two additional values: M, stores the maximum x-coordinate of any
vertex of C; m,. contains the minimum x-coordinate.

The search process begins by assigning to a and b the vertices represented at
El_x)e roots of 0, and Qp, the middle vertices of the respective hulls. Define @, and
b, as the rays extending from a and b rightward toward the next vertex on the
hull. Similarly, E; and?; represent the rays extending from a and b leftward
toward the previous vertex on the hull. The angles formed at a and at b guide our
search. Until a bridge is found, we repeatedly remove a fraction of the vertices of
one or both hulls from consideration as a bridge endpoint. The size of the four
angles, Z(ab, a)), 2(ab, ), (b,, ba), 2(b, ba), determine whether b is
itself the bridge and, if not, which vertices may be removed.*

We consider four cases determined by the presence or absence of reflex
angles. If there are no reflex angles (Fig. 2.12a), then the segment ab is itself the
bridge and the search is finished. The second category includes all cases where
one or both of L(%, ET) and L(Z—:, 'b—a)) is reflex. If L(E, _a')l) is reflex, then
neither a nor any vertex to the right of a can be a bridge point._;l" hus the bridge
point must lie in the left subtree of Q, (see Fig. 2.12b). If £(b,, bs) is reflex,
then both b and all vertices of B left of b can be removed from future considera-
tion and the bridge point must lie in the right subtree of QOp (see Fig. 2.12¢).

3Altemately, we can say that the bc-hull of a set P is defined as the convex hull of the union of P
with the point (0, ). The tc-hull is the convex hull of P U {(0, —o)}.
4All angles are measured in the counter-clockwise direction from the first ray to the second.
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FIG. 2.12. Case analysis for merging bc-hull A with be-hull B

The third category involves both £ (ab, E:) and /_(17; ba) being reflex. In this
case, we determine the intersection point, v = (x, y), of a, and b,. We let M,
represent the maximum x-coordinate of A, and let my, represent the minimum x-
coordinate of B. If x < my, then no vertex of B could lie below a,. Conse-
quently, neither a nor any point left of a could be a bridge point and they can be
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removed from future consideration (see Fig. 2.12d). Similarly, if x > M,, then
no vertex of A may lie below?? and so b and all vertices to the right of b can be
rejected (see Fig. 2.12e). If M, < x < my, then we may delete both sets (see Fig.
2.12f).

In the final category, only one of L(ab, E:) and 4(77_,), ba) is reflex. If A(F,),
ba) is reflex, ab forms an angle smaller than 180° with both @; and @ and thus a
remains a potential bridge point. In other words, no point of A lies below B. But
since ba is interior to the angle fromK toE, neither b nor any point right of b can
lie on the bridge (see Fig. 2. l2g). If L(EB), Zl:) is reflex, then neither @ nor any
point left of a can be a bridge point (see Fig. 2.12h).

In each of the last three categories, we cut in half the number of potential
bridge points on at least one of the bc-hulls. We may repeatedly set a and b to the
midpoints of the remaining vertices of A and B, respectively, by moving to the
leftson or rightson of the current node in Q, or Q. We then rerun the algorithm.
Since the height of both 0, and Q,, is O(log N), at most O(log N) iterations are
required.

We may formalize the algorithm as follows:

MERGE (A,B,C)
Begin

. a <« the root of Q,

2. B < the root of O,

3. done < 0

repeat

begin
a < Vlo|
5. b < VIg| - —>—> > > >
6. determine which of L(ab,a,),A(ab,a,),A(b,,ha),L(b,,ba), is reflex
7
8

&

. if none are, then done « |

. else if L(&Z),a,) or A(E:,m) is reflex, then
begin

9. if L(_)a_b:?,) is reflex, then o <« leftson(a)
10. if (b,ba) is reflex, then § < rightson(B)
end e dad -

11. else if Z(ab,a,) and £(bba) are reflex, then
begin N
12. (x, y) « the intersection of a, and b,
13. if x < my, then a < leftson(a)

14. if x > M,, then 8 <« rightson(8)

end —> > - —
15. else if either Z(ab,a,) or £(b, ba) is reflex, then
begin

16. if (ab,z:) is reflex, then a <« rightson(a)
17. if 2(b,,ba) is relfex, then B < leftson(B)
end
until done
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18. O < concatenate(leftsplit(Q,,a), rightsplit(Qp,b))
19. M < M,
20. me < m,

End

The set-up phase of the algorithm, steps 13, the interior of the loop, steps 417,
and the final two steps each require constant time. As the loop is iterated O(log N)
times, the algorithm through step 17 requires only O(log NMtime. Step 18 re-
quires a choice similar to the one we mentioned in section 3.1. We may leave
0, and Oy intact and merely copy the left portion of 0, and the right portion of
Qp before concatenating the two sections. As the copying itself requires O(N)
time, the merge algorithm as a whole requires linear time. Alternatively, we may
split the actual representations of Q, and Q, and then concatenate the appropri-
ate sections. In this case, we lose the ability to recapture immediately the pre-
vious states of the computation, but step 18 now requires only O(log N) time,
preserving an O(log n) worst-case complexity for the complete merge algorithm.

Having fully detailed the merge process, we return to the hierarchical al-
gorithm as a whole. The entire process can be modeled by a divide-and-conquer
tree, a T-tree. Suppose we wish to determine the be-hull of the set of points, P,
depicted in Fig. 2.13a. First, we sort the points in ascending order of x-coordi-

(10, 16)
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tiizye (410
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Q: Q  Q Q.  Q : : :
ViT o Vil4 v:4 WAl K k 3: 3:15
7 314 94 61 1381612 52 1| 15 10

Beginning of divide-and-conquer tree
FIG. 2.13.  An instance of the con- ) -
vex hull problem
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nate. This example includes one point for every x-coordinate from 1 to 16
inclusive, and henceforth each point will be identified by its y-coordinate. The
points are incorporated into the leaves of a balanced binary search tree (e.g., a
BB|a]-tree). Mirroring the binary search tree, each nonleaf node a includes a
pointer V[a] to the rightmost vertex of its left subtree. The T-tree for P, Tp, is
formed by augmenting each nonleaf node, a, with a Q-structure, Q,, which
represents the be-hull of all points in the subtree at a (see Fig. 2.13b).

The Q-structures are formed gradually as we move up the tree. At the bottom
level, the tree induces a natural pairing of points. The bc-hull of a pair of points
consists of a segment between them with a positive vertical ray added at each
endpoint (see Fig. 2.14a). The Q-structures on the first level of the tree describe
the be-hulls of these pairs. At each succeeding level of the tree, sibling be-hulls
are merged according to the process described above to form the Q-structure at
the parent node (see Figs. 2.14b-¢). Figure 2.14f represents T}, at the termination
of the algorithm. The root contains the bc-hull of the entire set P. We can then
repeat the same process to form the tc-hull. The merger of these hulls gives the
convex hull of the original set of points.

For a point set of size n, this algorithm requires 8(n log n) preprocessing time
to sort the points. The recurrence relation, T(n) = 2 T(n/2) + M(n) describes the
time complexity of the remainder of the -algorithm. The be-hull of a set of n/2
points must have no more than n/2 vertices. Thus, when the partial bc-hulls
remain intact, each level of the T-tree requires O(n) storage and the merge
technique uses linear time. Consequently, the overall algorithm will run in 6(n
log n) time, using O(n log n) space. If we choose not to preserve the partial bc-
hulls, the final T-tree contains only the complete bc-hull. At intermediate stages
in the algorithm, the T-tree contains only the bc-hulls of disjoint sets. Conse-
quently, the algorithm uses only linear space. Each merge requires only log-
arithmic time. Consequently,

log n

T =2T(5) + M) = X

i=1

= log 2 = O(n)
2
In order words, after the initial sorting this algorithm will require only linear
time. Since the problem of finding convex hulls corresponds to sorting and thus
any algorithm must require {(n log n) time, either algorithm can be considered
optimal.

3.3. Dynamic Convex Hulls

In the previous example, we determined the be-hull of a fixed set of points. In
many applications, however, we may wish to maintain the be-hull of a set which
allows insertions and deletions. In other situations, balanced binary search tree
accommodates insertions and deletions easily. The appropriate location is found
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FIG. 2.14. Building the bc-hull of
the instance in Fig. 2.13
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by beginning at the root and descending the tree until the relevant location is
found. After inserting or deleting the point, the path to the root is retraced,
rebalancing the tree and updating any pointers as necessary. The entire process
requires O(log n) time. This case is more complicated.

Suppose that we have the complete T-tree for the original set of points and
that all partial hulls have been retained. After locating the appropriate leaf
position in the T-tree for the insertion or deletion, we can rebuild the be-hull on
level 1 in constant time.. Its sibling hull remains unchanged, so we can merge the
two hulls to form the parent Q-structure. At each node as we ascend the tree, the
sibling hull is already available. Provided no rebalancing is necessary, a single
merger will move us one level higher in the tree. Suppose we arrive at a node and
determine that rebalancing is required. A BB(a)-tree can be rebalanced using no
more than two local rotations per node as we ascend the tree. To update the Q-
structures following these rotations, we will have to reform at most two of the be-
hulls by merging some of the partial bc-hulls in a new order. Nonetheless, only a
constant number of merges will be required at each node. Each merge requires
time linear in the size of the subtree.

log n
Therefore, the total insertion/deletion time can be ID(n) = 0( 2 % ) =
i=1
O(n), which is too large to be considered efficient.

Suppose that in building the original T-tree we had chosen to conserve space
and had thus destroyed the partial hulls. After each insertion or deletion, we
would then have to process the entire tree from level O to the root, again using
O(n) time.

We must try a new approach. In a new T* structure, the new Q-structure at a
node o will be formed from the actual portions of the children Q-structures, o,
and Oy, using logarithmic time. At a however, we retain a pointer, Bfal], to the
position of the left bridge point in Q,. In addition, we associate with the nodes -y
and 8 the remaining fragments of 0., and Qj, denoted 0.* and Qg* (see Fig.
2.15). Consequently, we could split Q_ after the left bridge point, as indicated by
Bla], and reform the complete Q. and Qy in logarithmic time.

We can modify the insert/delete algorithm as follows: begin at the root and
split the current bc-hull and form the be-hulls of its two children: compare the
desired point against the values of V at the root and move to the left or right son
accordingly. At each interior node, again split the Q-structure and form the Q-
structure of its children before moving to one child or the other. The descent will
require at most O(log n) time at each node, or O(log? n) time overall. In the
ascent, we will perform at most a constant number of merges at each node, using
only O(log n) time as we do not have to preserve entire partial hulls. Thus the

ascent also requires at most O(log? n) time. Consequently, we can maintain the
be-hull of a set of n points at a cost of O(log? n) per insertion/deletion.
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3.4. Order Decomposable Problems

The two dimensional bc-hull problem is a single example of a class of set
pr'oblcms suited to the dynamization process defined above. That process en-
tailed ordering the set and then forming the solution over the entire set by
fner.ging the solutions of the first i and the last n — i elements, forany | < i< p,
In time M(n). This suggests the name ““M(n)-order decomposable”’ for any set
problem having an M(n) merge algorithm dependent on some ordering scheme
ORD. A static divide-and-conquer algorithm takes time O(ORD(n) + T(n);
where T(n) = 2 T(n/2) + M(n).

A number of common problems belong to this class. Suppose we wish to
compute the maximal elements of the planar set A U B where all points g; in A
are left of all points b; of B. Recall that p is a maximal element of a set C i'ff for
all g € C, either X, > X, 0ry, > Y4 MAX(C) represents the sequence of maximal
element‘s of C in decreasing order of y-coordinate and in ascending order of
x-coordinate. Figure 2.16a highlights the maximal elements within the sample
sets.A and B by linking them together with a polygonal chain of horizontal and
vertical segments. Let Yp represent the maximum y-coordinate in B. Then
MAX(A U B) = concatenate({péMAX(A)ly,, > yg}, MAX(B)). Splitting MAX(A)
at the appropriate spot and concatenating both require O(log n) time. Conse-
quently, the two-dimensional maximal element problem is O(log n)-order
decomposable.

Consider the problem of determining the intersection of a collection of n
lower half-planes: for | = < n, aline l;'y = ax + b, bounds the half-plane H, =
{, yly <ax+ b;} from above. Sort the half-planes according to the slopes' of
the bounding lines. Suppose we have the border A of the intersection region
defined by the first i half-planes and the border B of the region defined by the last
n — i (see Fig. 2.16b). Find the intersection point of the two contours in time
O(log n). Split them there, and concatenate the front piece of the first with the
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Maximal element problem
(a)

Half - plane intersection problem FIG. 2.16. Other examples of
(b) order-decomposable problems

tail piece of the second, also using O(log n) time. Consequently, the lower half-
plane intersection problem is O(log n)-order decomposable.

In either case, a dynamic algorithm operates on a balanced T-tree. The leaves
contain the ordered elements of the set, and each nonleaf node a contains a
pointer V[a] to the largest element in its left subtree. At each nonleaf node, we
compute the solution over its subtree. At a node a with children vy and 8,. we form
0, from Q@ and Qy using O(M(n)) time. As we merge the two children Q-
structures, we will store a string of information describing the steps we take as
Bla], a tag at node a. As the merge process itself took only O(M(n)) time,
writing a string which describes that process cannot require more than O(M(n))
time or O(M(n)) space. The unused pieces of Q. and Qj are stored at -y and d as
0.* and Qy*, respectively. Only the root will retain a complete Q‘-struc.ture‘

To insert or deleté an object, we locate the appropriate leaf using binary
search. At every node a on the path from the root to the leaf, we use the
information stored in B[a] to split the Q-structure and recreate the complete Q-
structures at the children, using only as much time as the original merge. Thus
the process of descending the tree requires time

Llog n)
n
DOWN(n) = OM(n) + M(n/2) + M(n/4) + .. .) = O ( 2 M( 5 ).

=0

If M(n) = QU(n¢) for € > 0, then DOWN(n) = O(M(n)). Otherwise, DOWN(n) =
O(M(n) log n). After updating level O of the tree, we ascend the tree reforming
Q-structures on the path from the leaf to the root. Even with rebalancing, only a
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constant number of merges will be performed at each level. Consequently, UP(n)
= O(DOWN(n)).

We may conclude that any M(n)-order decomposable problem has a dynamic
algorithm which accommodates both insertions and deletions in time ID(n) =
OM(n)), if M(n), = Q(n*) for € > 0, and in time ID(n) = OM(n) log n)
otherwise. In other words, whenever there is a *‘cheap”’ merging algorithm for a
set problem, the problem can always be dynamized efficiently.

3.5. Notes

Divide-and-conquer techniques are as prevalent in computational geometry as
they are elsewhere in the design of algorithms. A common data structure which
derives from this approach is the Voronoi diagram which is used for closest point
problems (see Chapter 3).

The first convex hull algorithm was proposed by Graham (1972). His method
is simple, but does not easily allow dynamization. We follow the development of
Preparata and Hong (1977) here. This algorithm also extends to three dimen-
sions. The problem of computing hulls has been widely studied (see Chapter 5).

Overmars and van Leeuvwen (Overmars & van Leeuwen, 1981; van Leeuwen
& Overmars, 1981) were the first to consider methods of computing dynamic
convex hulls. Their work also led to the generalization to order-decomposable
problems (Overmars, 1981, 1983). Our development here follows theirs. Similar
techniques are used in (Dobkin & Munro, 1985). For details on the use of the
BB(w) data structure, see (Reingold, Nievergelt, & Deo, 1977).

4. GEOMETRIC TRANSFORMATIONS
4.1. Introduction

In this section, we discuss methods of transformation. Typically, transformations
change geometric objects into other geometric objects (e.g., take points into
lines) while preserving relations which held between the original objects (e.g.,
order or whether they intersected). A number of geometric problems are best
solved through the use of transformations. The standard scheme is to transform
the objects under consideration, solve a simpler problem on the transformed
objects, and then use that solution to solve the original problem. No single
transformation applies in all cases; a number of different transformations have
been used effectively. Here, we describe three commonly used transformations
in 2-space and in 3-space and demonstrate their applications.

4.2. Mathematical Background

The domain of all of our two-dimensional transformations will be the projective
plane. The projective plane is an enhanced version of the Euclidean plane in
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which each pair of lines intersects. The projective plane contains all points of the
Euclidean plane (the *“proper points’’). We introduce a set of *‘improper points’’
with one point associated with every direction in the plane. Two parallel lines,
then, intersect at that *‘improper point’” indicated by the direction of the parallel
lines (this can be thought of as a point at infinity). All ‘‘improper points’’ are
considered to lie on the same line: the “‘improper line’’ or the *‘line at infinity.”’
Thus, any two lines in the projective plane intersect at exactly one point: two
nonparallel proper lines intersect at a proper point (i.e., one of the Euclidean
plane); two parallel proper lines intersect at the improper point bearing the same
direction; and a proper line intersects the improper line at the improper point
defining the direction of the proper line. Likewise, between every two points
passes exactly one line: There is a proper line passing through every pair of
proper points; a proper line passes through a given improper point and a given
proper point; and the improper line passes through any two improper points.

In three dimensions, projective space will be obtained similarly. All points in
E3 are called “‘proper points.”” Define one **improper point’’ for every direction
in space. Collectively, the ‘“‘improper points’’ form the ‘‘improper plane.”’
Therefore, each proper plane will intersect the improper plane in an improper
line; a pair of parallel proper planes intersect in an improper line; and a pair of
nonparallel proper planes intersect in a proper line. Given any two lines, either
they are skew or else they intersect in a single point. Any line and any point not
on the line define a plane.

In general, the actual algorithms used to solve problems rely solely on Eucli-
dean geometry. Therefore, although all the transformations will map the projec-
tive plane (space) onto itself, we will wish to choose a transformation which
maps the objects under consideration to *‘proper’’ objects. Thus, the parameters
of the original problem will dictate which transformations are appropriate.
Throughout the section, we will use the following notation: The images of a
point V, aline 4, and a triangle XYZ under a transformation B will be denoted by
Vg, hy, and XYZ,, respectively.

4.3. Point/Line Duality |

The appropriate transformation is selected based on relationships among the
original objects and the given problem to be solved. Our choice is guided by the
properties to be preserved under the transformation.

We first return to the two-dimensional problem of determining the intersec-
tion of a collection of N lower half-planes where for 1 <i <N, a line Li:y=a;x
+ b; bounds the half-plane H, = {(x, y) | y < a, x + b,} from above. A redundant
half-plane is defined as one which contains the entire intersection region in its
interior. One approach to the problem consists of identifying and eliminating the
redundant half-planes. For each remaining half-plane H,, a portion of /; lies on
the boundary of the intersection region. To determine the boundary, we then sort
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the /; in descending order of slope in O(n log n) time; determine the intersection
points between pairs of adjacent lines in linear time; now the boundary consists
of the left half of the first line up to its intersection with the second line, the
segments from one intersection point to the next, and the half of the final line
extending to the right from its intersection with the second to last line.

To complete the algorithm, we must define a process for determining redun-
dant half-planes. A half-plane H, is redundant iff there are half-planes H; and H,
such that the slopes satisfy the inequality a; < a; < a; and such that /, lies above
the intersection point of l; and [, We say that the pair L, I, forms a certificate of
redundancy for /.. Given a collection of N half-planes, the naive method of
deciding the redundancy of a given half-plane entails comparing its bounding
line against all other pairs of lines in time 0(N?). Determining all redundancies
requires O(N3).

Clearly, a transformation which allows for efficient identification of redun-
dant half-planes must in some way preserve both the above/below relationship
and the concept of slope. We show that the transformation T which maps the
point (a, b) to the line Y = ax + b satisfies these criteria. To do s0, we must first
determine the image of a line I: Y = ¢x + d under the transformation T. As
defined above, T maps the points (n, cn + d) and (m, cm + d), both of which lie
onl,tothelinesy =nx +cn+ d andy = mx + cm + d, respectively. Both of
these lines pass through the point P = (—c, d) (see Fig. 2.17). In other words, T
maps the set of all points lying on / to the set of all lines passing through P, or the
“‘pencil of lines’” through P. More simply, we just say that Tmapsy=cx+dto
the point (—c, d). ‘

That T maps y = ¢x + d to the point (—c, d) rather than to the point (¢, d)
destroys the symmetry of the transformation. We prefer transformations which
are self-inverting. Nonetheless, T remains valuable because it preserves both the
above/below relationship and the concept of slope. First of all, the negative of
the slope of a line survives as the x-coordinate of the image point. Consequently,
if the slope of / exceeds the slope of &, then the point I7 lies to the left of k.
Secondly, the vertical distance from P = (a, b)tothe line I: y = cx + d is defined
as the distance from P to the point (a, ac + d) which lieson /, b — (ac + d). The

Liy=cx+d

By:iy=mx+cm+d

x

A=(n,cn+d)

Ar:iy=nx+cn+d
(a) (b)

FIG. 2.17. A line (a) and its dual (b) under the transformation T

ALTERNATIVE : (a,b)—>y=2ax—b self-dual

Yyeoxid —> (5 -
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vertical distance from the line Py:y = ax + b to the point I = (—c, d) is defined
as the distance from the point (—c, b — ac) lying on P, to the point /,» (—ac + b)
— d. The two quantities are identical in both sign and magnitude.

Before applying T to the half-plane intersection problem, we must determine
the image of a vertical line under T. Each point (m, a) on the line x = m is
mapped to a line y = mx + g, a line with slope m. All lines with slope m,
however, intersect at the improper point P, associated with m. Thus, T maps the
vertical line x = m to the pencil of lines through P,,, or just to P, . Conversely,
each line y = mx + a which passes through P, is mapped to a point (—m, a)
which lies on the line x = —m. Consequently, the image of P,, under T corre-
sponds to x = —m. In general, we prefer to ignore improper points. Whenever a
given problem involves vertical lines, we either choose to use a transformation
other than T or we rotate the object space slightly until no vertical lines remain.

The transformation T preserves the notion of slope and vertical distance and
thus can help to identify the redundant half-planes within a collection where none
is bounded by a vertical line. Consider the collection of lower half-planes bound-
ed above by the lines 4, j, k, [, m, and n and their images or ‘‘duals,”’ under T:
hy, jz. kp, 7. my, and n, (see Figs. 2.18a and b). Portions of m, k, h, and !
together form the boundary of the intersection region R. Thus, these four lines
cannot correspond to redundant half-planes. The line j does correspond to a
redundant half-plane: the slope of j has a value between the slopes of k and k4, and
J lies above the intersection point of & and 4. Consequently, j,- must lie between
the horizontal values of &, and hy. in addition, j, must lie above the line
k;H T the dual of the intersection point of k and h. Similarly, since h, I,
forms a certificate of redundancy forn, n; must lie between the horizontal values
of hy and /;- and above the line h,/;.

We may conclude that a line p in the object plane has certificate of redundan-
¢y g, r if, and only if p, lies directly above the line segment g7, in the image
plane. A line p which has no such certificate corresponds to a significant half-
plane. The only points p,- which lie above no segment g,r- are those points on

no. \ m X
\ 1
Nrle

(a) (b)

FIG. 2.18. Computing the intersection of a set of lower half-planes (a) by
finding the be-hull of the dual set of points (b)
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the bottom convex hull, or be-hull, of the set of all image points. In the example
of Fig. 2.18a, we observe that My, kr, hy and [ form the be-hull, while Jrand n,
lie the interior.

The transformation T enables us to distinguish the significant and redundant
half-planes in a collection of size N in time O(N log N): finding the dual of each
bounding line takes time O(N); determining the be-hull of the daul points takes
time O(N log N). Those half-planes corresponding to points on the bc-hull are
significant. The half-planes corresponding to points in the interior are redundant.

We note that our algorithm for using a geometric transformation to solve the
half-plane intersection problem consisted of three parts. We first identified the
geometric techniques we might use (in this case redundancy). Next, we identi-
fied the invariants required by a transformation (notion of above/below and
slope). Finally, we found an appropriate transformation and solved the problem.
This is a classic example of how geometric transformations are used.

Had we wished to solve the lower half-space intersection problem, we could

have used a three dimensional version of T:
ALTERNATIVE

T
(abec) > z=ax + by + ¢

v2=4x+éy+c—9 (
Self -dual

Here, T still preserves vertical distance, distance with respect to the x-coordinate,
as well as the directional cosines, which represent the rates at which z changes
with respect to x and y. The points on the bottom part of the convex hull of the
transformed problem will correspond to the nonredundant half-spaces within the
original problem. The details are left to the reader.

A number of other intersection problems depend on the above/below rela-
tionship and/or the concept of slope. A line segment intersects a line if, and only
if one endpoint lies above the line and the other lies below the line. A ray 7
intersects a line / if, and only if one of the following conditions holds:

z=ax+by+c—r>(—a, —b,c)

. Fextends to the right with greater slope than / and the vertex lies below I;
7 extends to the right with smaller slope than / and the vertex lies above /;
7 extends to the left more steeply than / and the vertex lies above /;

. F extends to the left with smaller slope than / and the vertex lies below /.

A

The intersection of two segments, two rays, or a ray and a segment can be
determined by a sequence of tests involving slopes and/or vertical separation.

To show how T can be applied to the problems above, we must first determine
the image under T of both rays and segments. Recall that the image of a line is
the set of all lines through a point P. It is reasonable to assume that the image of a
line segment should be a set of some of the lines through a point P. The set may

(@, b c) —> Z=2ax+2y—C
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y

A=(-I,3)/

[B=(I.9)
M=(0,6)

(a) (b)

FIG. 2.19. A line segment (a) and

(c) (d) its dual (b); a ray (c) and its dual (d)

not contain a vertical line since a line segment AB does not pass through a point
at infinity. Thus, we may conclude that the image of AB consists of the set of all
lines lying between A and B, in the counter-clockwise direction (see Figs. 2.19a
and b). This region is aptly described as a double wedge. A ray AB may be
considered a line segment extending from A through the point B and ending at the
improper point having direction AB. The image of AB, then, is a double wedge
formed by A; and the vertical line to which the improper point is mapped. As
demonstrated in Figs. 2.19c and d, teit)ing a point on AB determines which of the
two double wedges corresponds to AB.

Under the transformation T, we may determine the intersection of segments,
rays and lines as follows. A line segment AB intersects a line [ iff one of Arand
By lies above /. and the other lies below. More simply, AB intersec__tg Lif [ lies
within the double wedge AB; (see Figs. 2.20a and b). A ray AB extending
rightward with slope m intersects a line / iff I lies to the right of x = m and above
Ay, or I lies to the left of x = m and below Ay (see Figs. 2.20c and d). A ray AB
extending leftward with slope m intersects / iff {7 lies to the right of x = m ag_c)i
below A, or to the left of x = m and above Ay Either case simplifies to AB
intersects [ iff /,. lies in the dotﬂe wedge AB,. The segments, AB and | CD
intersect iff the image of the line AB lies in the interior of the double wedge CD,
and vice versa. This is é:_guivalent to saying that AB and CD intersect iff
AF intersects CD and CD intersects AB.

This concludes our survey of the transformation 7. As we noted earlier, there
is a general scheme for applying both this and other transformations to geometric
problems. While this one is particularly useful for some low-level intersection
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FIG. 2.20. Using duality to check
for the intersection of: a line segment
and a line (a & b); a ray and a line (c
& d)

problems, the other transformations given in this sectinn apply equally well in
other contexts.

4.4. Point/Line Duality I

The second transformation we consider is well suited for polygon inclu-
sion/intersection problems. We note that T is not particularly useful in these
contexts. Applying T to the problem of whether a line segment s intersected
AABC would, in fact, complicate the solution process. T maps AABC and its
interior to the region R which is infinite but contains no vertical ray (see Figs.
2.21a, b). A segment s intersects AABC if and only if the following conditions
are satisfied: The vertex of the double wedge s lies in R and the intersection of
sy and R contains at least one infinite line (see Fig. 2.21c). As neither R nor its
complement form convex regions, these conditions are difficult to test.

FIG. 2.21. The effect of the transformation T on a triangle and an intersectihg
line segment
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FIG. 2.22. A line (a) and its dual
(b) under the transformation S

Our second transformation, S, maps the point (a, b) to the line ax + by + 1 =
0. We observe in Fig. 2.22 that § maps each point on the line cx + dy + 1. = 0 to
a line passing through the point (c, d). Thus S maps the line cx + dy + 1 = 0 to
the pencil of lines through (c, d), or the point (¢, d). Like T, S maps a line
segment to a double wedge, this time to one which does not contain the origin.
The image of a ray is a double wedge formed by one line passing through the
origin and one not.

The transformation S preserves the concept of the distance of an object from
the origin. The line I: ax + by + | = 0 is perpendicular to the line m: bx — ay =
0 at the point (—a/(a? + b2), —b/(a® + b?)). The line [ is precisely 1/'Va? + b2
units away from the origin along the line m. The point (a, b), however, which is‘
dual to /, is precisely Via> + b? units away from the origin along the line m
in the opposite direction. Thus, points further from the origin are mapped to
lines closer to the origin. That S is also its own inverse (i.e., (a, b) §
ax + by + 1 = 05(a, b)) contributes to its usefulness.

We note that each improper point is mapped to the line through the origin
having the same direction and vice versa. Similarly, the origin and the improper
line are duals. Consequently, S should not be applied to lines or to segments of
lines which pass through the origin. Nonetheless, the mere fact that the domain
of a problem contains a line through the origin should not make us abandon S. By
translating the axes in one direction or another, we may be able to insure that S
will map every object in the domain of our problem to another proper object.

Since the transformation S preserves the concept of distance from the origin, it
is most useful for problems where the origin serves a focal role. The image under
S of an arbitrary triangle, AABC, is just as unwieldy as the image produced by T
(see Figs. 2.23a and b). Consider, however, a convex polygon which contains
the origin. Each segment from the origin to a point A on the boundary lies
completely within the polygon. If the segment has slope m, then S maps each
point on the segment to a line on the opposite side of the origin with slope — 1/m.
The line Ag is closest to the origin and the origin itself corresponds to the line at
infinity. We may conclude that S maps the segment to the half-plane bounded by
Ag which does not include the origin. Thus the interior of a convex polygon
containing the origin is mapped to the union of a set of half-planes not containing
the origin, or the exterior of a convex polygon.
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(e)

FIG. 2.23. The effect of the transformation S on an arbitrary triangle (a & b) and
on a triangle enclosing the origin (c, d, & e)

We can demonstrate this phenomenon on the triangle of Fig. 2.23a, by first
trapslating the axes 1/2 to the left and 2 units up, as shown in Fig. 23¢c. Now the
union of the double wedges ag, bg and cg consists of the entire plane except for
th.e triangle formed by the vertices of as, bs and cg, which we call AABC, (see
F]g. 2.23d). AABC contains a point P if and only if Pg is exterior to MBE’S. A
line P intersects triangle AABC if and only if ps lies outside AABC;. A point Qis
exterlor. to ABC if and only if Qs lies in ABC. And a line q is disjoint from
AABC if and only if AABC contains gs. This tidy symmetry allows us to
simplify our definition of the transformation much as we did when we said that
th'e image of a line is a point rather than a pencil of lines. When S is applied to a
triangle containing the origin, we say that the image of each segment is a point
rather than a wedge, and the image of each vertex is a segment, rather than a Iine.’
In otl‘ler words, S maps one triangle containing the origin to another triangle
Fontaming the origin (see Fig. 2.23¢). The significance of the duality, however
is that the interior of one triangle is mapped to the exterior of the other. ,

This particular duality transformation can be useful in cases where we wish to
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FIG. 2.24. Computing the intersection of triangles (a) by finding the convex hull
of the dual triangles (b)

determine the intersection of triangles. In particular, suppose that, having al-
ready identified a common point, we wish to compute the intersection of two
triangles. We translate the axes so that the common point lies at the origin. Let R
represent the set of all points lying on the boundary of either triangle. Then the
border of the intersection region can be defined as follows: I = {p € R| at some
angle 0 € [0, 2m), p is the closest point in R to the origin}. The region of
intersection forms a polygon which can be identified by listing a sequence of
vertices. In Fig. 2.24a, the sequence of vertices describing the intersection
region is WXBYZ. At 0, the segment XW is closest to the origin. In the dual
problem, we wish to identify the polygon containing those points p which are the
farthest from the origin for some . The process is simple: Finding the convex
hull of ABCs and DEF g will yield a sequence of vertices eg, c, ag, dg, bg. The
segments joining these vertices, X, Bg, Y, Zg, Wy, correspond to the vertices of
the intersection region of the original problem (see Fig. 2.24b).

Thus, the transformation § enables us to convert an intersection problem to a
convex hull problem. The technique succeeds for any number of convex pgly-
gons as long as each contains the origin (see Fig. 2.24c and d). It works in a
similar fashion in three dimensions. The three-dimensional version of S maps a
point P = (a, b, ¢) to the plane ax + by + cz + | = O which is perpendicular to
line passing through both P and the origin 1/Va2 + b2 + ¢2 units on the opposite
side of the origin from P. Suppose we apply S to a pair of intersecting planes.
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Each plane is mapped to a point. The line formed by the intersecting planes maps
to the line passing through the two image points. Consequently, the image of a
convex polyhedron containing the origin will be another convex polyhedron
containing the origin. The interior of the first, however, will have been mapped
to the exterior of the second. Thus to compute the intersection of two or more
convex polyhedra, we first find a common point, translate the axes so that this
point becomes the origin; apply S; find the convex hull of all of the ‘dual
polyhedra; reapply S to obtain the vertices and faces of the intersection
polyhedron.

4.5. Inversion (Point/Point Duality)

We turn now to the problem of determining the intersection of a collection of
disks. Each of the transformations defined so far has been geared towards prob-
lems of straight line geometry, so we need a different type of transformation
here. We note, however, that problems in straight line geometry are generally
easier to solve than those involving curves. Consequently, a transformation
which maps circles to lines could simplify the disk intersection problem.

We define a new transformation G which is similar to § in that it functions as
its own inverse and preserves the concept of distance of an object from the
origin. In this case, however, instead of mapping points to lines on opposite sides
of the origin, G maps the point P = (q, b) to a point which is 1/Va2 + b2 units
away from the origin in the same direction as P. Using polar coordinates, G maps
(r, 8) to (1/r, ). In fact, for G to be a one-to-one mapping of the plane onto
itself, we must use polar coordinates and consider the origin as an infinite
number of points of the form (0, 0), 6€(0, 2m), all of which lie on a circle of
radius zero centered at the origin. In this way, the point at the origin denoted by
(0, 6) is mapped to (, 9), the improper point having direction 8. The entire null
circle is then mapped to the improper line. A circle centered at the origin with
finite radius 7 is dual to a concentric circle with radius 1/r.

The transformation G pairs each circle passing through the origin with a
straight line which does not pass through the origin. As an example, we consider
theline l: y = —3x + 1 (see Fig. 2.25). We determine the images of the points A,
B, C, D, E, F by drawing a ray from the origin through each one of them and
picking the point at the appropriate distance. In addition, we note that the rays 0
= 05 and 6 = 6, which are parallel to the line L, will intersect / at the point at
infinity and only at the point at infinity. Thus the origin, or th point (0, 8,) = (0,
05), lies on the dual of /. :

As demonstrated above, a line whose closest point is R units from the origin in
direction 6 is transformed to a circle passing through both the origin and (1/R, 0).
A line 6 = 6, passing through the origin, however, is mapped to itself: the
segment from (—1, 6,) through the origin to the point (1, 6,) is mapped to the
segment from (—1, 6,) through the point at infinity to the point (1, 0), and vice
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FIG. 2.25. A line and its dual un-
der the transformation G

versa. A circle containing the origin is mapped to another circle containing the
origin (see Fig. 2.26a), and a circle not containing the origin is mapped to
another circle not containing the origin (see Fig. 2.26b). In all cases of cir-
cle/circle duality, the interior of one circle is mapped to the exterior of the other:
the interior of a circle through the origin is mapped to a half-plane not containing
the origin; a half-plane bounded by a line through the origin is mapped to itself.

G enables us to determine easily the intersection of a collection of disks whose
boundaries all contain the origin. In the example shown in Fig. 2.27, three arcs
bound the intersection of disks D, E, and F: the arc along circle D running in the
clockwise direction from x to y; the arc along circle F from y to z; and the arc
along circle E from z to x. G can help to determine this boundary. G transforms
each of the disks to a half-plane bounded below by a straight line not through the
origin. The intersection of these half-planes is bounded by the vertices xg, yg,
Zg, where x is the point of infinity first along D and secondly along E,;, and by
the segments of D, Fg, and E, which join the vertices. These correspond

N
Q
Ce

(a) (b)

FIG. 2.26. Two circles and their duals
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FIG. 2.27. Computing the intersection of a set of
intersection of the dual half-planes (b)

exactly to the vertices and arcs of the inters
ly, the union of the half-planes would co

A problem involving only disks which
be quite rare. We may,
a collection of disks in
plane. Then for each dis
P and which contain d
origin coincides with P
the origin. The intersection of the half-
of the balls which we can then intersec

(b)

circles (a) by finding the

ection region in the original. Similar-
rrespond to the union of the disks.
all pass through a single point would
however, extend G to three dimensions: (r, 0, ®). Given
a plane, we can choose an arbitrary point P not in the
k d, we determine the unique ball which passes through
as a cross-section. Next we translate the axes so that the
. G will now map each ball to a half-space not containing
spaces will correspond to the intersection
t with the original plane to determine the

TABLE 2.1
Summary of the Transformations Considered in this Section.
T S G
(a.b) v=ax+b ax+by+1=0 ( 4 b )
: a2+b2’  g2+p2
—1 a \2 1 )2 a2+1
. (33) (og)a(m4) -
y=ax (-a.b) b b ) P\mw) =T
-1 a2 b \2 g2+p2
wrn LR ()
ax+by > B (a,b) x+2 + y+2 4
(=R2+(y—kp2=h2+42 | — — hxtky= %
preserves above/below, slope distance distance
makes improper vertical lines the origin the origin
useful for half-plane,ray N polygon N disk N
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intersection of the disks. The interested reader may find that these or other
transformations will simplify his/her favorite problem.

4.6. Notes

The mathematical background section reflects The VNR Concise Encyclopedia of
Mathematics.

Geometric transformations such as those mentioned here have their roots in
the mathematics of the early nineteenth century (Boyer, 1968). Transformations
appear in the work of Steiner, and projective geometry originated with Poncelet.
Their application to problems of computing dates back to the concept of primal
and dual problems in the study of linear programming (see e.g., Papadimitriou &
Steiglitz, 1982).

Brown (1979) gives a systematic treatment of transformations and their ap-
plications to problems of computational geometry. Since his dissertation, these
methods have found vast application (Chazelle, 1983; Chazelle, Guibas, & Lee,
1983; Dobkin & Edelsbrunner, 1984; Edelsbrunner, Kirkpatrick, & Maurer,
1982; Edelsbrunner, O’Rourke, & Seidel, 1983).

The examples given here are derived from Brown’s work (1979) as well as
from Muller and Preparata (1978). The latter reference gives a complex applica-
tion of duality to the polyhedron intersection problem, extending their work on
halfspace intersection (Preparata & Muller, 1979). The problem is divided there
into the subproblems of finding an intersection point and then using that as a
basis for computing the entire intersection. The problem of finding the first point
was then further studied in Chazelle and Dobkin (1980) and Dobkin and
Kirkpatrick (1983).

5. CONCLUSION

We have presented here three different techniques which have proved useful in
deriving algorithms for geometric problems: hierarchical search, hierarchical
computation, and geometric transformations. Although in each case we supply
specific examples, each technique has a wide variety of applications.

Our ability to produce an efficient algorithm using one or more of the given
techniques derives from some understanding of the underlying geometry. Each
of the first two depends on finding an appropriate data structure or basic unit. For
the general polygon search algorithm, we chose a triangular subdivision. For the
convex hull algorithm, concatenable queues held the partial hulls. To choose an
appropriate geometric transform, the problem must be carefully analysed to
determine the properties or characteristics which must be preserved. To solve the
half-plane intersection problem, we select a transformation which preserves ver-
tical distance and slope.
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Al.though the three techniques appear to be distinct, they are mutually depen-
dent in many applications. For example, the dynamic convex hull algorithm
above depends on hierarchical search for insertions and deletions. In general
polygon search, the initial triangulation of S to form S depends on a hierarchical

whole problem or part of a problem to a format more accessible to hierarchical

decomposition. Together or separately, these three techniques span a wide field
of application.

Although all applications here have been geometric in nature, we believe that

these methods will have profitable applications in the field of robotics. We invite
feedback. ' ‘
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