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Abstract It is shown that for every finite set of disjoint convex polygonal obstacles

in the plane, with a total of n vertices, the free space around the obstacles can be par-

titioned into open convex cells whose dual graph (defined below) is 2-edge connected.

Intuitively, every edge of the dual graph corresponds to a pair of adjacent cells that

are both incident to the same vertex.

Aichholzer et al. recently conjectured that given an even number of line-segment

obstacles, one can construct a convex partition by successively extending the segments

along their supporting lines such that the dual graph is the union of two edge-disjoint

spanning trees. Here we present counterexamples to this conjecture, with n disjoint line

segments for any n ≥ 15, such that the dual graph of any convex partition constructed

by this method has a bridge edge, and thus the dual graph cannot be partitioned into

two spanning trees.

Keywords Convex Partitions · Dual Graphs · Geometric Matchings

1 Introduction

For a finite set S of disjoint convex polygonal obstacles in the plane R2, a convex

partition of the free space R2 \ (
⋃
S) is a set C of open convex regions (called cells)

lying in the free space such that the cells are pairwise disjoint and their closures cover

the entire free space. Since every vertex of an obstacle is a reflex vertex of the free
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space, it must be incident to at least two cells. Let σ be an assignment of every vertex

to two adjacent convex cells in C. A convex partition C and an assignment σ define a

dual graph D(C, σ): the cells in C correspond to the nodes of the dual graph, and each

vertex v of an obstacle corresponds to an edge between the two cells assigned to v (see

Fig. 1). Double edges are possible, corresponding to two endpoints of a line-segment

obstacle on the common boundary of two cells.

(a) (b) (c) (d)

Fig. 1 (a) Five obstacles with a total of 12 vertices. (b) A convex partition. (c) An assignment
σ. (d) The resulting dual graph (dashed lines).

It is straightforward to construct an arbitrary convex partition for a set of convex

polygons as follows. Let V denote the set of vertices of the obstacles; and let π be a

permutation on V . Process the vertices in the order π. For a vertex v ∈ V , draw a

directed line segment (called extension) that starts from the vertex along the angle

bisector (for a line-segment obstacle, the extension is collinear with the obstacle), and

ends where it hits another obstacle, a previous extension, or infinity. For k convex

obstacles with a total of n vertices, this näıve algorithm produces a convex partition

with n − k + 1 cells, if no two extensions are collinear. For example, for n disjoint

line segments (with 2n endpoints) in general position, we obtain n + 1 cells. If the

obstacles are in general position, then each vertex v is incident to exactly two cells,

lying on opposite sides of the extension emanating from v. Hence the assignment σ

is unique, and the choice of permutation π completely determines the dual graph,

which we denote by D(π). We call this a Straight-Forward convex partition, and

a Straight-Forward dual graph, which depends only on the permutation π of the

vertices.

Results. We show instances where no permutation π produces a Straight-Forward

dual graph D(π) that is 2-edge connected (Section 2). This is a counterexample to a

conjecture by Aichholzer et al. [1].

We show that for every finite set of disjoint convex polygons in the plane, with

no three collinear vertices, there is a convex partition C (not necessarily Straight-

Forward) and an assignment σ such that D(C, σ) is 2-edge connected (Section 3).

We define a wide class of convex partitions, which includes all Straight-Forward

convex partitions. In this class, a bridge in the dual graph is characterized by a cer-

tain simple polygon in the convex partition (a “forbidden” pattern). To build a convex

partition with a 2-edge connected dual graph, we start with an arbitrary Straight-

Forward convex partition and apply a sequence of “local modifications” until all

forbidden patterns are eliminated. A local modification continuously deforms a simple
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polygon, which corresponds to a forbidden pattern. Similar continuous motion argu-

ments have previously been used for proving combinatorial results in [2,3,16,19,21].

Motivation. A plane matching is a set of n disjoint line segments in the plane, which

is a perfect matching on the 2n endpoints. Two plane matchings on the same vertex

set are compatible if there are no two edges that cross, and are disjoint if there is

no shared edge. Aichholzer et al. [1] conjectured that for every plane matching on 4n

vertices, there is a disjoint compatible plane matching (compatible geometric matchings

conjecture). They proved that their conjecture holds if the 2n segments in the matching

admit a convex partition whose dual graph is the union of two edge-disjoint spanning

trees, and the two endpoints of each segment corresponds to distinct spanning trees.

Aichholzer et al. further conjectured for the 4n endpoints of 2n line segments in the

plane, there is a permutation π such that the Straight-Forward dual graph D(π) is

the union of two edge-disjoint spanning trees (two spanning trees conjecture).

The conjecture would immediately imply that such a dual graph is 2-edge con-

nected. Benbernou et al. [4] claimed that there is always a permutation π such that

D(π) is 2-edge connected—but there was a flaw in their argument [5]. Our first re-

sult shows that such permutation π does not always exist, and it also refutes the two

spanning trees conjecture of Aichholzer et al. [1].

Related Work. Given a set of convex polygonal obstacles and a bounding box, we

may think of the bounding box as a simple polygon and the obstacles as polygonal

holes. Then the problem of creating a convex partition becomes that of decomposing

the polygon with holes into convex parts. Convex polygonal decomposition has received

considerable attention in the field of computational geometry. The focus has been to

produce a decomposition with as few convex parts as possible. Lingas [18] showed that

finding the minimal convex decomposition (decomposing the polygon into the fewest

number of convex parts) is NP-hard for polygons with holes. There are approximation

algorithm [15] and it is fixed parameter tractable [10]. However, for polygons without

holes, minimal convex decompositions can be computed in polynomial time [9,14]–

see [13] for a survey on polygonal decomposition.

While minimal convex decomposition is desirable, the number of convex parts is

not the only measure of the quality of a convex partition (decomposition). In Lien’s

and Amato’s work on approximate convex decomposition [17] with applications in

skeleton extraction, the goal is to produce an approximate convex partition (where not

all cells are convex) that highlights salient features. In the equitable convex partitioning

problem, all convex cells are required to have the same value of some measure e.g. the

same number of red and blues points [12], or the same area [8].

Another criterion for the quality of a convex partition might be some property of

its dual graph (the definition of dual graph varies from application to application). Tan

et al. [20] show that a Straight-Forward convex partition for sensor networks can be

computed in a distributed manner, and demonstrate how it improves the performance

of the geographic routing algorithms. A leader sensor is chosen for each cell. Commu-

nication between sensors belonging to different convex cells is routed through these

leader sensors. Two leader sensors can communicate with each other if and only if they

share a boundary vertex. The network of leader sensors can be modeled by the dual

graph of the convex partition (although Tan et al. [20] did not explicitly refer to a dual

graph). We believe that the communication in their model can be made fault-tolerant

using a convex partition produced by our algorithm.
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2 A Counterexample for the Two Spanning Trees Conjecture

Theorem 1 For every n ≥ 15, there are n disjoint line segments in the plane such

that the Straight-Forward dual graph D(π) has a bridge edge for every permutation

π on the 2n segment endpoints.
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Fig. 2 A counterexample with n = 15 segments. Every permutation produces a Straight-
Forward dual graph with a bridge edge.

Proof. We show that for the 15 line segments in Fig. 2, every permutation π produces

a Straight-Forward dual graph D(π) with a bridge edge (that is, removing this edge

disconnects the dual graph). We can generate larger constructions by adding segments

whose supporting lines avoid the convex hull of this configuration.

Our configuration in Fig. 2 is rotationally symmetric about the origin O. It consists

of three rotationally symmetric configurations {A1, A2, . . . , A5}, {B1, B2, B3, B4, B5},
and {C1, C2, C3, C4, C5}, which we call star structures. In addition, the star structure

Ai, (resp., Bi and Ci) has a reflection symmetry in the orthogonal bisector of segment

A3 (resp., B3 and C3). Label the endpoints of each segment X by X− and X+ such

that the triangle OX−X+ has counterclockwise orientation (where O is the origin).

In Fig. 2 the dotted lines represent the arrangement of all possible extensions of

the given line segments. Note that both endpoints of A3, B3, and C3 lie in the interior

of the convex hull of the set of all segments, and the remaining segments each have one

endpoint on the convex hull. The extension from an endpoint on the convex hull goes
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to infinity or terminates at a previous extension. The extension from an endpoint in

the interior of the convex hull terminates at another segment or a previous extension.

It is enough to show that any Straight-Forward convex partition has a cell

incident to exactly one segment endpoint. Such a cell necessarily corresponds to a leaf

node in the dual graph. We distinguish two cases.

Case 1. For at least one of A3, B3, and C3, the extension from each endpoint ter-

minates at some line segment. Assume w.l.o.g. that the extensions from endpoints A−3
and A+

3 terminate at segments A1 and A4, respectively (Fig. 2). Then the extensions

from A+
2 and A−5 terminate at or before reaching the extensions from A−3 and A+

3 ,

respectively (Fig. 2). It can be easily verified that in this case every permutation of the

four endpoints {A+
1 , A

+
2 , A

−
4 , A

−
5 } produces a leaf in the dual graph.

A1

A2

A3

A5

A4
A1

A2

A3

A5

A4 A1

A2

A3

A5

A4

A1

A2

A3

A5

A4

+

+

+

+

+
+

+

+

+

A1

A2

A3

A5

A4
ee e

Case 2: The segment A3 is hit by an extension e.
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Case 1: Extensions from A−
3 and A+

3 hit
the segments A1 and A4, respectively.

Fig. 3 Possible permutations in one star-structure of our construction.

Case 2. For A3, B3, and C3, the extension from at least one endpoint does not ter-

minate at a line segment. If the extension from endpointA−3 (resp.A+
3 , B

−
3 , B

+
3 , C

−
3 , C

+
3 )

does not terminate at a line segment, then it is blocked by the extension emanating

from A+
2 (resp., A−5 , B

+
2 , B

−
5 , C

+
2 , C

−
5 ). In this case, we say that the extension from

endpoint A+
2 (resp., A−5 , B

+
2 , B

−
5 , C

+
2 , C

−
5 ) escapes (intuitively, it escapes from its star

structure). We may assume by symmetry that the first extension in permutation π that

escapes is the one emanating from C+
2 . Then the extension e from C+

2 hits segment

A3. By our assumption, the extension from A+
2 or A−5 also escapes, and hits e. The

extension e, an extension from A+
2 or A−5 , and from A−3 or A+

3 , respectively, creates a

leaf in the dual graph (Fig. 2). 2

It is not essential in our construction that all obstacles are line segments. We can

repeat the construction using convex polygons with arbitrarily many vertices.

Theorem 2 For every n ≥ 15, and integers ki ≥ 2, i = 1, 2, . . . , n, there are n disjoint

obstacles in the plane such that obstacle i is a convex polygon with ki vertices and the

Straight-Forward dual graph D(π) has a bridge edge for every permutation π.
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Proof. For n = 15, start with the construction in Fig. 2. Label the 15 segments

arbitrarily by integers 1..15. If ki ≥ 3, we replace segment i by a convex polygon

with ki vertices as follows. If segment I has an endpoint incident to the convex hull,

then replace it by a long and skinny convex ki-gon with ki − 1 vertices in the small

neighborhood of the segment endpoint on the convex hull, and one vertex at the other

segment endpoint. If segment i lies in the interior of the convex hull, then replace

it by a long and skinny convex ki-gon with one vertex at each segment endpoint and

ki−2 vertices in the small neighborhood of the midpoint facing the origin. The proof of

Theorem 1 shows that for any permutation π of the vertices, the Straight-Forward

dual graph has a leaf. If n > 15, we can add convex polygon such that all angle bisectors

avoid the convex hull of this configuration. 2

3 Constructing a Convex Partition

We showed in Section 2 that in some instances, no Straight-Forward dual graph

is 2-edge connected. In this section we present an algorithm that produces a con-

vex partition with a 2-edge connected dual graph. We will start from an arbitrary

Straight-Forward convex partition, and apply a sequence of local modifications, if

necessary, until the dual graph becomes 2-edge connected. Our local modifications will

not change the number of cells. We define a class of convex partitions (Directed-

Forest) that includes all Straight-Forward convex partitions and is closed under

the local modifications we propose.

The basis for local modifications is a simple idea. In a Straight-Forward convex

partition, extensions are created sequentially (each vertex emits a directed ray) and

whenever two directed extensions meet at a Steiner vertex v (defined below), the earlier

extension continues in its original direction, and the later one terminate (Fig. 3(a)).

Here, however, we allow the two directed extensions to merge and continue as one edge

in any direction that maintains the convexity of all the angles incident to v (Fig. 3(b)).

Merged extensions provide considerable flexibility.

(a) (b)

q
q

Fig. 4 (a) If two incoming extensions meet at q, the earlier extension continues in its original
direction, and the later one terminates. (b) If two incoming extensions meet at q, the merged
extension may continue in any direction within the opposing wedge.
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Definition 1 For a given set S of disjoint convex polygonal obstacles, the class of

Directed-Forest convex partitions is defined as follows (refer to Fig. 3): The free

space R2 \ (
⋃
S) is decomposed into convex cells by directed edges (including directed

rays going to infinity). Denote by V the set of vertices of the polygonal obstacles in S.

Each endpoint of a directed edge is either a vertex in V or a Steiner vertex (lying in

the interior of the free space, or on the boundary of an obstacle). We require that

– every vertex in V emits exactly one outgoing edge;

– every Steiner point in the interior of the free space is incident to exactly one out-

going edge;

– no Steiner point on a convex obstacle is incident to any outgoing edge; and

– the directed edges do not form a cycle.

It is easy to see that a Straight-Forward convex partition belongs to the class of

Directed-Forest convex partitions. The dual graph of a Directed-Forest convex

partitions has no isolated nodes.

Proposition 1 There is an obstacle vertex on the boundary of every cell.

Proof. Consider a directed edge on the boundary of a cell. Follow directed edges in

reverse orientation along the boundary. Since directed edges cannot form a cycle, and

the out-degree of every Steiner vertex is at most one, there must be at least one obstacle

vertex on the boundary of the cell. 2

In a Directed-Forest, we can also follow directed edges (in forward direction)

from any vertex in V to an obstacle or to infinity, since the out-degree of each vertex

is always exactly one, unless the vertex lies on the boundary of an obstacle or at

infinity. For connected components of extensions (directed edges), we use the concept

of extension trees introduced by Bose et al. [7].

(a) (b) (c)

γ
v

r rr

v′

Fig. 5 (a) A convex partition formed by directed line segments. The extended path γ orig-
inates at v and terminates at r, two points on the same obstacle. The edge at v is a bridge
in the dual graph, and γ is called forbidden. (b) A single extended-path emitted by v′. (c) A
single extension tree rooted at r.

Definition 2 The extended-path of a vertex v ∈ V is a directed path along directed

edges starting from v and ending on an obstacle or at infinity. Its (relative) interior is

disjoint from all obstacles.
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Definition 3 An extension tree is the union of all extended-paths that end at the

same point, which is called the root of the extension tree. The size of an extension

tree is the number of extended-paths included in the tree.

A vertex v ∈ V may be incident to more than two cells. It is incident to `+ 2 cells

if it is incident to ` incoming edges. In our construction, we let σ assign a vertex v of

an obstacle to the two cells adjacent to the unique outgoing edge incident to v. With

this convention, a bridge edge in the dual graphs D(C, σ) can be characterized by a

forbidden pattern (see Fig. 3(b)).

Definition 4 An extended-path starting at v ∈ V is called forbidden if it ends at

the obstacle incident to v.

A forbidden extended-path, together with the boundary of the incident obstacle,

forms a simple closed curve, which encloses a bounded region.

Lemma 1 A dual graph D(C, σ) of a Directed-Forest convex partition is 2-edge

connected if and only if no vertex v ∈ V emits a forbidden extended-path.

Proof. First we show that a forbidden extended-path implies a bridge in the dual

graph. Let γ be a forbidden extended-path, starting from vertex v of an obstacle,

and ending at point r on the boundary of the same obstacle (see Figures 3(b),3.2, 8).

Extended-path γ together with the obstacle boundary between v and r forms a simple

closed curve and partitions the free space into two regions R1 and R2, each of which

is the union of some convex cells. Let V1 and V2 be the set of nodes in the dual graph

corresponding to the convex cells in these regions, respectively. Point v is the only

obstacle vertex along γ. If an edge e of the dual graph connects some node in V1 to a

node in V2, then e corresponds to a vertex of an obstacle whose unique outgoing edge

is part of γ. But v is the only such vertex. This implies that there is a bridge in the

dual graph, whose removal disconnects V1 from V2.

Next we show that a bridge in the dual graph implies a forbidden extended-path.

Assume that V1 and V2 form a partition of V in D(C, σ) such that V1 and V2 are

connected by a bridge edge e. The two node sets correspond to two regions, R1 and

R2, in the free space. Let β be boundary separating the two regions. We first show

that one of these regions is bounded.

Suppose for contradiction that both regions R1 and R2 are unbounded. Note that

β must contain at least two directed edges of the convex partition that go to infinity.

Since every Steiner vertex in the interior of the free space has an outgoing edge, β must

contain at least two extended-paths. Hence β contains at least two vertices of some

obstacles, and the adjacent outgoing edges. Thus there are at least two edges in the

dual graph between the node sets V1 and V2, therefore, e is not a bridge edge.

Now assume without loss of generality that the region R1 is bounded, and thus

the separating boundary β is a closed curve. If we pick an arbitrary directed extension

along β and follow β in reverse direction, then we arrive to a segment endpoint v.

Assume that v corresponds to the bridge edge e. Then we arrive to the same segment

endpoint v starting from any directed extension along β. This means that all directed

edges along β are in the extended-path of v. Since β is a closed curve, the extended-path

of v must end on the boundary of the obstacle incident to v, and thus it a forbidden

extended-path. 2
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3.1 Convex Partitioning Algorithm

We construct a convex partition as follows. We first create a Straight-Forward

convex partition, which is in the class of Directed-Forest convex partitions. Let

T denote the set of extension trees. Each extension tree may contain one or more

forbidden extended-paths. If an extension tree t ∈ T contains a forbidden extended-

path γ starting from a vertex v, then we continuously deform t with a sequence of

local modifications until a vertex v′ of an obstacle collides with the relative interior

of t (subroutine FlexTree(t)). At that time, t splits into two extension trees t1 and

t2 (where t1 contains all the extended-paths of t leading to v′, and t2 contains all the

remaining extended-paths of t still leading to r). Each of these two trees (t1 and t2) is

strictly smaller in size than t. An extension tree of size one is a straight-line extension,

and cannot contain a forbidden extended-path. Since the number of extended-paths is

fixed (equal to the number of vertices in V ), eventually no extension tree contains any

forbidden extended-path, and we obtain a convex partition whose dual graph has no

bridges by Lemma 1.

For a finite set S of disjoint convex polygonal obstacles in the plane, the main

loop of our partition algorithm is CreateConvexPartition(S). It calls subroutine

FlexTree(t) for every extension tree that contains a forbidden extended-path, which

in turn calls subroutine Expand(t, γ) for a forbidden extended path γ, as described in

Section 3.2.

Algorithm 1 CreateConvexPartition(S)

Given: A set S of disjoint convex polygons having n vertices in total.
Create a Straight-Forward convex partition.
Let T be set of extension trees in the partition.
while there is an extension tree t ∈ T containing a forbidden extended-path do

FlexTree(t)
end while

Algorithm 2 FlexTree(t)

Let γ be a forbidden extended-path contained in t.
while γ is still a forbidden extended-path do

(t, γ) = Expand(t, γ)
end while
Let v′ ∈ V be a vertex of an obstacle where the extended-path γ now terminates.
Split tree t into two extension trees t1 and t2. Subtree t1 consists of the extended-paths
that now terminate at v′. Subtree t2 consists of the extended-paths that terminate at the
original endpoint of γ.

3.2 Local Modifications: Expand(t, γ)

Consider a forbidden extended-path γ contained in an extension tree t ∈ T . Path γ

starts from a vertex v ∈ V , and ends at a root r lying on the boundary of the obstacle
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v′′

t3

Fig. 6 (a) An extension tree t with a forbidden extended-path. (b) After deforming and
splitting t into two trees, t2 contains a forbidden extended-path. (c) Deforming and splitting
t2 eliminates all forbidden extended-paths.

s ∈ S incident to v. Let P be the simple polygon formed by path γ and a portion of

the boundary of s between v and r such that s is disjoint from the interior of P .

We continuously deform the boundary of P , together with the extension tree t,

until it collides with a new vertex v′ ∈ V that is not incident to s. We deform P in a

sequence of local deformations, or steps.

What is a local deformation step? Each step involves either one edge or two con-

secutive edges of the polygon P . The vertices of P are v, r and the Steiner points where

P has an interior angle different from 180◦. Steiner vertices where P has an interior

angle of 180◦ are considered interior points of edges of P . During the deformation of

an edge of P , one endpoint of the edge moves along a straight line trajectory and the

other endpoint is fixed. Each step of the deformation will

(i) increase the interior of the polygon P ,

(ii) keep r a vertex of P , and

(iii) maintain a valid Directed-Forest convex partition.

The third condition implies, in particular, that every cell has to remain convex. Since

the interior of P is increasing, some cells in the exterior of P (and adjacent to P ) will

shrink—we maintain that every cell adjacent to P has a nonempty interior.

Note that an edge of P may contain Steiner vertices of the convex partition. At

each such Steiner point, an extended path starting from either the interior of or the

exterior of P joins the forbidden extended-path along the boundary of P (Fig. 3.2(a)).

In the area swept by the deforming edges, the adjacent edges of the convex subdivision

are either truncated (in the exterior of P ) or extended (in the interior of P ), while

maintaining a valid Directed-Forest convex partition at all times (Fig. 3.2(b-c)). In

particular, the Steiner points along the deforming edges also move continuously

The continuous deformation of the boundary of P can be discretized based on

the sweep-line paradigm of Bentley and Ottmann [6]. Since the deforming edges follow

algebraic trajectories (one endpoint is fixed, and the other moves along a straight line),

we can maintain a queue of combinatorial changes, which are: (1) two Steiner points

along a deforming edge merge; (2) A Steiner point along a deforming edge splits into

several Steiner points; (3) A deforming edge of P becomes collinear with an adjacent

directed edge of the convex partition.
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Fig. 7 (a) An extension tree t with a forbidden extended-path. (b) A local deformation step
stretches edges xy and xr of P such that x continuously modes along the edge xw towards w.
(c) We update the extended paths in the area swept by the deforming edges.

Where to perform a local deformation step? The polygon P is modified either

at a convex vertex x on the convex hull of P or at a certain reflex vertex x′. The vertex

x or x′ is calculated at the start of each local deformation step.

r
`

v

x

y

x′

P

s

z

Fig. 8 Polygon P corresponding to a forbidden extended-path v, . . . , r; convex vertex x; in-
flexible edges xy and xz; reflex vertex x′.

Consider the edge of the obstacle s that is incident to the point v, and is part

of the boundary of the polygon P . Let ` be the supporting line through this edge.

The obstacle s lies completely in one of the closed halfplanes bounded by ` (since s is
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convex). Let x be a vertex of P furthest away from the supporting line ` in the other

halfplane. Clearly, x is a convex vertex of P (interior angle less than 180◦), otherwise

it will not be the furthest. The goal is to expand the polygon P by modifying the edges

xy and xz incident to x. Imagine grabbing the vertex x and pulling it away from the

polygon P stretching the edges xy and xz. But this expansion can only occur if both

the edge xy and xz are flexible. An edge of P is inflexible if there is a convex cell in

the interior of P such that part of the edge lies on the boundary of the cell and the

cell has an angle of 180◦ at one endpoints of the edge. Since x is a convex vertex, the

edge xy or xz can be inflexible if and only if some convex cell has an angle of 180◦ at

y or z, respectively (Fig. 8).

In the case that at least one of the edges incident to x is inflexible, local modification

of P takes place at a reflex vertex x′. Assume w.l.o.g. that xy is inflexible. Then y must

be a reflex vertex of P (every inflexible edge of P is incident to a reflex vertex). Starting

with the reflex vertex y, move along the boundary of P in the direction away from x.

Let x′ be the first reflex vertex encountered such that one of the edges incident to x′

is flexible. By Proposition 2 (below), there is always one such vertex x′.

Proposition 2 If vertex x is incident to an inflexible edge, then there is a reflex

polygonal chain along P that includes this inflexible edge and terminates at a reflex

vertex x′ of P that has exactly one flexible edge.

Proof. Let xy be an inflexible edge incident to x. Consider the maximal reflex polyg-

onal chain λ along P starting from x and containing xy. Each internal vertex of λ is

reflex, and it is incident on at most one cell in the interior of P which has an angle of

180◦ at that vertex. Since each cell is convex, its boundary can overlap with at most

one edge of λ. That is, a cell at each internal vertex of λ is responsible for making at

most one edge of λ inflexible. Since a polygonal path has one fewer internal vertices

than edges, λ has at least one flexible edge. Let x′ be the first internal vertex of λ

incident to a flexible edge along λ. 2

How to perform a local deformation step? Local deformation of P takes place

either at a convex vertex x (Cases 1 and 2), or at a reflex vertex x′ (Case 3). Since the

number of cells in the convex partition must remain the same, it is necessary to check

for the collapse of a cell in the exterior of P (Case 4).

Case 1. Both edges xy and xz of P incident to x are flexible, and there is an edge

wx in the opposing wedge of ∠yxz. Fig. 3.2(a). Then continuously move x along xw

towards w while stretching the edges xy and xz.

Case 2. Both edges xy and xz of P incident to x, are flexible, and there is no edge

in the opposing wedge of ∠yxz. Fig. 3.2(b). Let `x be the line parallel to ` passing

through x, and let w be a neighbor of x on the opposite side of `x. Assume that z and

w are on the same side of the angle bisector of ∠yxz. Then split x into two vertices

x1 and x2. Now x1 remains fixed at x and x2 moves continuously along xw towards w

stretching the edge x2z.

Case 3. At least one edge incident to x is inflexible; then there is a reflex vertex x′

such that edge x′z′ is inflexible, and x′y′ is flexible. Fig. 3.2(c). Continuously move x′

along x′z′ towards z′ while stretching the edge x′y′.
Case 4. The next combinatorial change during stretching some edge ab to position ab′,
where vertex b continuously moves along segment bb′, would collapse a cell c in the

exterior of P . Fig. 3.2(d). Then the interior of triangle ∆abb′ is disjoint from obstacles,
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Fig. 9 Three local operations: (a) Convex vertex x, incoming edge w in the wedge. (b) Convex
vertex x, no incoming edge in the wedge. (c) Reflex vertex x. (d) The case of a collapsing cell.

and a side of some obstacle lies in segment ab′ and is adjacent to cell c (cf. Proposition 3

below). Let v′ ∈ ab′ be the vertex of this obstacle that lies closer to a. Stretch edge ab

of P into the path (a, v′, b).

When to stop a local deformation step? Continuously deform one or two edges of

P , at either a convex vertex x or a reflex vertex x′, until one of the following conditions

occurs:

– an angle of a convex cell interior to P or an angle of P becomes 180◦;
– two vertices of the polygon P collide;

– one of the edges of P collides either in its interior or at its endpoint with a vertex

v′ of an obstacle;

– the next combinatorial change in the deformation would collapse a cell in the ex-

terior of P .

Since a local deformation step does not always terminate in a collision with an

obstacle vertex v′, the subroutine FlexTree(t) decides at the end of each step whether

more local modifications are needed.

3.3 Correctness of the Algorithm

We prove that we can eliminate all forbidden extended-paths and obtain a Directed-

Forest convex partition with a 2-edge connected dual graph. Let t be a extension

tree, containing a forbidden extended-path γ starting from v ∈ V and ending at root

r. First we show that in Expand(t, γ), the four cases cover all possibilities.
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Proposition 3 If the next combinatorial change while deforming some edge ab to po-

sition ab′, where b continuously moves along segment bb′, would collapse a cell c in the

exterior of P , then the interior of triangle ∆abb′ is disjoint from obstacles, and and a

side of some obstacle lies in segment ab′ and is adjacent to cell c.

Proof. A continuous deformation of ab to ab′, where b′ moves along segment bb′,
sweeps triangle ∆abb′. Hence the interior of ∆abb′ is disjoint from obstacles, and if any

extended-path intersects the interior of ∆abb′, then it is part of the extension tree t.

Assume that cell c ∈ C would collapse if ab reaches position ab′. By Proposition 1,

there is a vertex v′ ∈ V on the boundary of cell c, and so v′ must lie on the line segment

ab′. Since every extended-path in interior of triangle ∆abb′ is part of t, no extension

in ∆abb′ terminates at v′. Hence the two edges along the boundary of c incident to v′

are the extension emitted by v′ and a side of the obstacle s′ containing v′. It follows

that segment ab′ contains a side of obstacle s′. 2

Proposition 4 Every step Expand(t, γ) preserves a Directed-Forest convex par-

tition and it also preserves the number of cells.

Proof. It is clear that the continuous deformations in Cases 1-3 maintain a valid

Directed-Forest with the same number of cells. Consider Case 4. Denoting by v′ ∈
ab′ the vertex of this side that lies closer to a, we stretch edge ab of P into the path

(a, v′, b). By the choice of v′, edge av′ does not contains any side of obstacles. Edge v′b
traverses triangle ∆abb′, so it does not any side of obstacles, either. By Proposition 3,

a side of some obstacle s′ lies in segment ab′ and is adjacent to cell c, and so it cannot

collapse in this step of Expand(t, γ). A valid Directed-Forest convex partition is

preserved with the same number of cells. 2

Lemma 2 The subroutine FlexTree(t) modifies an extension tree t ∈ T , with a

forbidden extended-path γ, in a finite number of Expand(t, γ) steps until an obstacle

vertex v′ ∈ V appears along γ.

Proof. FlexTree(t) repeatedly calls Expand(t, γ) for a forbidden extended-path γ.

We associate an integer count(t, γ) to t and γ and show that Expand(t, γ) either

deforms t to collide with an obstacle s 6= s′ or count(t, γ) strictly decreases. This

implies that FlexTree(t) terminates in a finite number of steps.

Let k denote the size of t (i.e., the number of extended-paths in t). Then t has at

most k − 1 Steiner vertices in the free space, since each corresponds to the merging

of two or more extended-paths. Let kex be the number of Steiner vertices of t in the

exterior of P , let rP be the number of vertices of P , let fP be the number of flexible

edges of P , and let mp be the number of extended-paths in t that enter vertex x of

P from the exterior of P . Then let count(t, γ) = 2k · kex + rP + fP + 2mP . Recall

that a Steiner vertex where P has an internal angle of 180◦ is not a vertex of P . The

vertices of P are v, r and Steiner vertices in the interior of the free space where P has

a non-straight internal angle, hence rp, fP ,mP < k.

Consider a sequence of Expand(t, γ) steps where t does not collide with an obstacle.

Since in Case 4, a vertex v′ ∈ V appears in the relative interior of t, we may assume

that only Case 1–3 are applied. Case 1–3 expand the interior of polygon P , and the

directed edges in the exterior of P are not deformed. Hence kex never increases, and it

decreases if P expands and reaches a Steiner point in the exterior of P .
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Now consider a sequence of Expand(t, γ) steps where kex remains fixed and Case 4

does not apply. Then mP can only decrease in Case 1–3. Case 2 initially introduces

a new edge of P (increasing rP and fP by one each) but it also decreases mP by at

least one. Case 1 and 3 never increase rP or fP . In Case 1–3, the deformation step

terminates when an interior angle of a convex cell within P becomes 180◦ (and an edge

becomes inflexible, decreasing fP ) or an interior angle of P becomes 180◦ (and P loses

a vertex, decreasing rP ). In both events, rP + fP decreases by at least one. Therefore,

count(t, γ) = 2k · kex + rP + fP + 2mP strictly decreases in every step Expand(t, γ),

until the relative interior of t collides with an obstacle. 2

Theorem 3 For every finite set of disjoint convex polygonal obstacles in the plane,

there is a convex partition and an assignment σ such that the dual graph D(C, σ) is

2-edge connected. For k convex polygonal obstacles with a total of n vertices, the convex

partition consists of n− k + 1 convex cells.

Proof. The convex partitioning algorithm first creates a Straight-Forward convex

partition for the given set of disjoint polygonal obstacles. For k disjoint obstacles with

a total of n vertices, it consists of n− k+ 1 convex cells. The extensions in the convex

partition can be represented as a set of extension trees T . We showed in Lemma 1 that

there is a bridge in the dual graph iff some extension tree contains a forbidden extended-

path. Subroutine FlexTree(t) splits every extension tree t containing a forbidden

extended-path into two smaller trees. (The extended-paths in t are distributed between

the two resulting trees.) An extension tree that consists of a single extended-path is a

straight-line extension, and cannot be forbidden (a straight-line extension emitted from

a vertex of an obstacle cannot hit the same obstacle, since each obstacle is convex.)

Therefore, after at most |V |/2 calls to FlexTree(t), no extended-path is forbidden,

and so the dual graph of the convex partition is 2-edge connected. 2

4 Conclusion

We have shown that for every finite set of convex polygonal obstacles, there is a convex

partition with a 2-edge connected dual graph. We have presented a polynomial time

algorithm for constructing the dual graph. It is straightforward to implemented our

algorithm in O(n4 logn) time for obstacles with a total of n vertices. Each Expand(t, γ)

operation involves stretching two edges of a simple polygon, and can be implemented in

O(n logn) time. By Lemma 2, each FlexTree(t) requires O(n2) calls to Expand(t, γ).

Finally, each FlexTree(t) increases splits the extension tree t into two, where the

number of extension trees is at most n—the number of vertices.

For comparison, the Straight-Forward convex partition for any permutation π

can be computed in O(n log2 n) time [11]. For a permutation π where the vertices with

rightward pointing angle bisectors come before the vertices with leftward pointing angle

bisectors, a Straight-Forward convex partition can be computed in O(n logn) time

by two line sweeps.

Tan et al. [20] computes Straight-Forward convex partition in a distributed

manner, which makes the algorithm suitable for sensor networks. However, it remains

to be seen whether the algorithm to produce convex partitions with 2-edge connected

dual graphs presented in this paper could be modified to work in a distributed manner.

A related question is how to support efficient insertion and deletion of convex polygonal

obstacles. In other words: how local the local modifications really are?
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