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Abstract

The concept of location depth was introduced as a way to extend the univariate no-
tion of ranking to a bivariate configuration of data points. It has been used successfully
for robust estimation, hypothesis testing, and graphical display. The depth contours
form a collection of nested polygons, and the center of the deepest contour is called the
Tukey median. The only available implemented algorithms for the depth contours and
the Tukey median are slow, which limits their usefulness. In this paper we describe
an optimal algorithm which computes all bivariate depth contours in O(n?) time and
space, using topological sweep of the dual arrangement of lines. Once these contours
are known, the location depth of any point can be computed in O(log2 n) time with no
additional preprocessing or in O(logn) time after O(n?) preprocessing. We provide fast
implementations of these algorithms to allow their use in everyday statistical practice.

Keywords: Bagplot, Bivariate Median, Graphical Display, Robust Estimation, Tukey
Depth

1 Introduction

The location depth of a given point € relative to a bivariate data set first occurred (without

being given a name) as a test statistic of Hodges (1955) for the hypothesis that 6 is the center
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of the probability distribution from which the data was drawn. More recently, Rousseeuw
and Struyf (2000) have put this test in a broader context by proving that location depth
actually characterizes angular symmetry. Liu and Singh (1997) constructed other statistical

tests based on location depth.

Definition. Let Z = {z1,...,2,} be a finite set of data points in R and let 6 be an
arbitrary point, not necessarily in Z. The location depth of 6 relative to Z is the
smallest number of points of Z lying in any closed halfspace determined by a line

through 6.

The location depth thus varies between 0 (when 6 lies outside the convex hull of Z) and n
(when all points of Z coincide with 8). Figure 1 shows a point 6 with location depth 1. The
more 6 is centrally located, the higher its depth. For sets Z in general position, the depth
can be at most |n/2] (this occurs when Z is symmetric about ). Throughout this paper,

we will concentrate on bivariate data sets (p = 2).

Figure 1: The point # (which is not a data point) has location depth 1.

Definition. For a fixed positive integer &, the set of points in the plane with location depth
> k is a convex polygonal region, called the k-th depth contour (referred to as the

k-hull in the computational geometry literature).

Tukey (1975) proposed to use depth contours in a graphical display of the data. The k-th
contour is the intersection of all halfplanes containing n — k + 1 data points (see Figure 2).
Note that the vertices of depth contours are either points from the original set or new points
from the intersection of lines through two data points. The maximum depth (over all 8)
of Z is denoted by £*, and from Helly’s theorem (see Wenger 1997) it follows that always

k* > |n/3] (this fact is also known as the existence of at least one centerpoint of Z).



Figure 2: The boundary of depth contour 2 is drawn in bold.

Definition. The Tukey Median, T, is the center of gravity of the deepest contour.

Donoho and Gasko (1992) showed that T™* is a location estimator with several desirable
properties. They define the finite-sample breakdown value of an estimator as the smallest
fraction of contamination that needs to be added to a data set to make the estimator

arbitrarily large. Thus,

€ (T™; Zp) = min{

s sup [T (Zusn) = T"(Z0)] = 00},

ntm
where Z, ., is a data set formed by adding m observations to Z,,. The Tukey median has
a good breakdown value (making it more robust than the median based on Liu’s (1990)
simplicial depth) with €*(T™;Z) > 1/(p + 1) for any sample in general position. When the
data set is drawn from an angularly symmetric distribution, €*(7™; Z) tends to 1/3 in any
dimension. Hence, when at least 2/3 of the points come from such a distribution, then
the median remains in a bounded region, regardless of the position of the other points.
Moreover, the location depth is invariant under affine transformations, making 7% affine
equivariant (unlike the spatial median, which is based on distances). The asymptotics of
the Tukey median have been studied by Bai and He (1999).

The bagplot proposed by Rousseeuw, Ruts, and Tukey (1999) is a two-dimensional
generalization of Tukey’s univariate boxplot (Tukey 1977). It is based on location depth
and provides a visual representation of the location, spread, correlation, skewness, and tails
of the data. Figure 3 shows the bagplot of the spleen weight versus the liver weight of 73
hamsters (Cleveland 1993). The Tukey median 7™ is depicted by a cross, and the dark grey
area around the median is the bag which contains 50% of the data. The bag is constructed

as an interpolation between two subsequent depth contours and gives us an idea of the
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Figure 3: Bagplot of the spleen weight versus the liver weight of 73 hamsters.

shape of the data cloud. Here we see that there is a positive correlation between the two
variables. A data point is considered an outlier if it lies outside of the fence (not displayed
in the bagplot), which is obtained by inflating the bag by a factor 3 relative to 7. The
light grey area is the convex hull of the bag and the non-outliers. The computation of the
fence and the light grey area are immediate once the Tukey median and the bag are known.
Here we have two outlying observations, depicted by stars. These two hamsters have a large

spleen relative to the weight of their liver.

1.1 Previous implementations and our results

Theoretical complexity results on depth contours, or k-hulls, have been known for some time
(Cole, Sharir and Yap 1987). The best theoretical result for computing the Tukey median is
an O(nlog® n) algorithm by Matousek (1991), but its complex structure makes it an unlikely
candidate for actual implementation. Fast implementations of depth contours are critical
for several applications. An overview of statistical methods based on the location depth is

given by Liu, Parelius and Singh (1999). Not many implemented algorithms were available.



The program ISODEPTH (Ruts and Rousseeuw 1996) computes the k-th depth contour
in O(n?logn) time, and hence needs O(n3logn) time to compute all depth contours. The
programs HALFMED (Rousseeuw and Ruts 1998) and BAGPLOT (Rousseeuw, Ruts and
Tukey 1999) give O(n?log? n) implementations to compute the Tukey median and the bag.
These programs become impractically slow for large data sets.

We present an O(n?) time algorithm for computing all the depth contours, as well as
the location depth of all the data points. Consequently, we compute the Tukey median and
the bag in the same time bound. We achieve our results by using duality and topological
sweep of an arrangement of lines. All our algorithms are numerically stable. Our code
allows collinearities in the data set, but currently assumes that no two data points have the
same z-coordinate (which can always be achieved by rotating the data first). Preliminary
code which does not have this assumption is also available. We also give empirical results
on the dramatic speed-up (by a factor of more than 300 for data sets of size 700 and higher)
provided by our algorithm over ISODEPTH and HALFMED.

In the paper, we will use standard notations to describe the time and space complexities
of our algorithms. For functions f(n) and g(n), f(n) = O(g(n) if there exists a ¢ > 0 and
an Ny > 0 such that for all n > Ny, f(n) < cg(n). Conversely, f(n) = Q(g(n) if there
exists a ¢ > 0 and an Ny > 0 such that for all n > Ny, f(n) > cg(n). Moreover, f(n) =
O(g(n)) denotes that both f(n) = O(g(n) and f(n) = Q(g(n)). Finally, f(n) = o(g(n)) if
limn o0 f (1)/g(n) = 0.

2 The Algorithms
2.1 Preliminaries

The planar partition induced by a set L of non-vertical lines in the plane is referred to as
the arrangement induced by L. An arrangement consists of vertices, edges, and cells. Some
of the edges and cells are unbounded. We give below some standard definitions (see e.g. de
Berg et al. 1997, Preparata and Shamos 1985) that are relevant to the description of our

algorithm.

Definition. Given an arrangement of lines L in the plane, the lower envelope (upper en-
velope) of L is the boundary of the “lowermost” (“uppermost”) unbounded cell. This
is the cell with the property that if a downward (upward) vertical ray is drawn from

any point in the cell, it will not intersect the arrangement anywhere. See Figure 4(a).



Upper envelope

2-level —

Lower envelope

(a) (b)

Figure 4: (a) Upper and lower envelopes of an arrangement of lines; (b) the 2-level.

Definition. Given an arrangement of n lines in the plane, the k-level of the arrangement
is the set of points of the arrangement that have at most k — 1 lines strictly above it,
and at most n — k lines strictly below it. See Figure 4(b). Note that the 1-level is the

upper envelope and the n-level is the lower envelope.

Definition. The upper hull (lower hull) of a planar set of points Z is defined to be the set
of edges of the convex hull of Z that have Z below (above) the supporting line. See

Figure 5.
Upper hull
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Figure 5: The upper and lower hulls of a set of points.

Definition. We define a k-divider of the point set Z as a line having exactly £ — 1 points
of Z on one side and at most n — k points of Z on the other side (so the line must
contain at least one point of Z). A special k-divider is a k-divider that contains at
least two points of Z. A special k-halfplane is a closed halfplane bounded by a special
k-divider and containing n — k + 1 points of Z.



The k-th depth contour is the convex polygon obtained by intersecting all the special k-
halfplanes of Z (Cole, Sharir and Yap 1987). A special k-halfplane is an upper (resp. lower)
halfplane if it is bounded from below (resp. above). Therefore the k-th depth contour is
the intersection of the lower envelope of the lines that bound the lower special k-halfplanes,

with the upper envelope of the lines that bound the upper special k-halfplanes.

2.2 Determining the Depth Contours

Constructing the depth contours involves three major steps. The first step describes a
conceptual tool and provides the framework on which steps 2 and 3 are based. A brief
description of each step is given below. Explanatory and algorithmic details appear later

in the section.

1. First we use a duality to map every data point to a line. In particular, we map the
point z; = (x;,y;) to the line b = (—x;)a + y; in the (a,b)-space. Hence the set of
data points in the primal defines an arrangement of lines in the dual. An intersection
point of two lines in the dual (i.e., a vertex of the arrangement) corresponds to a line

between the respective points in the primal.

2. Then we use topological sweep to find all vertices of the arrangement of lines efficiently.
As we find each vertex in the dual, we can determine the level of that vertex. This gives
us the depth contour to which the corresponding line (and its associated halfplane)

potentially contributes in the primal.

3. Finally, each convex depth contour is given by the intersection of the halfplanes deter-
mined in the previous step. This is equivalent to finding the upper and lower convex
hulls of the corresponding vertices in the dual. The intersection of the halfplanes

determined by the hull vertices gives the final depth contour.

A high-level description of the algorithm to construct the depth contours for a data set

Z of n points may be given as follows.



Algorithm DepthContours(Z,n)

{
L +— dual(Z);

// TopoSweep returns, for each k, the sorted list of arrangement
// vertices that potentially contribute to the k-th depth contour
Levels +— TopoSweep(L,n);

// FindHulls finds the upper and lower hulls of the arrangement
// vertices identified above as potential contributors to a given
// contour
for (i =1 to n/2)

contours[i] «— FindHulls(Levels[i]);

return contours;

}

This method was first suggested by Cole, Sharir and Yap (1987), but without using
topological sweep. Also for the least median of squares regression estimator (Rousseeuw
1984), efficient algorithms have been constructed by means of duality and topological sweep
(Edelsbrunner and Souvaine 1990, Souvaine and Steele 1987). In the remainder of this
section, we provide a detailed description of each step of the algorithm. The discussion

assumes that no two data points have the same z-coordinate.

The Arrangement. We use the standard dual mapping that maps each point z = (z,y)
to the non-vertical line D(z) : b = (—z)a + vy, and each non-vertical line [ : y = azx +b
to the point D(l) = (a,b) (see e.g. Dobkin and Souvaine 1987, Edelsbrunner 1987).
This duality has a number of interesting properties. It preserves the above/below
relationship: point z lies above/on/below line [ in the primal plane if and only if line
D(z) lies above/on/below point D(l). It is intersection preserving: lines I; and [y
intersect at point z if and only if line D(z) passes through points D(I;) and D(l3), and
line [ passes through points z; and z, if and only if lines D(z1) and D(z2) intersect
at point D(I). The line between two points in the primal dualizes to the intersection

point of the corresponding lines in the dual.

Given a set L of non-vertical lines in the dual, we use D(L) to denote the set of its
primal points. Since the slope of a line in the dual is the negative z-coordinate of the

primal point, the left-to-right list of edges of the lower envelope of L corresponds ex-



actly to the right-to-left list of points of the lower hull of the points of D(L). Similarly,
the left-to-right list of edges of the upper envelope of L corresponds to the left-to-right
list of points of the upper hull of D(L). So, the lower (resp. upper) envelope of a set
of lines in the dual can be found by computing the lower (resp. upper) hull of the

primal set of points. See Figure 6.

Figure 6: The lower envelope of lines in the dual is the lower hull of the primal set of points.

Consider the arrangement induced by the set of dual (non-vertical) lines of Z. Since
no two points of Z have the same z-coordinate, no two lines of the arrangement
are parallel. Let [ be a line through two points in the primal corresponding to the
intersection point ¢ in the dual. The vertical line v through ¢ in the dual intersects
every line of the arrangement, some above ¢ and some below 7. The number of lines
intersected above (resp. below) i exactly equals the number of points lying above
(resp. below) [ in the primal. Let m be the number of crossings above i and let r
be the number of crossings below i. Define k = min{m,r} + 1. It follows that [ is a
special k-divider and its associated special k-halfplane potentially contributes to the

k-th depth contour.

During the topological sweep of the arrangement (the next step of the algorithm), in
order to make the future computation of the depth contour easier, when a vertex of
the arrangement is identified, it is classified as upper or lower. Using the notation
from above, if m was the minimum, more points lie below the corresponding line in
the primal and we say that the vertex belongs to the k-th upper set. Conversely, if
r was the minimum the vertex is said to belong to the k-th lower set. See Figure 7.

After the sweep, since all vertices have been examined, for each k£ we have a list of



arrangement vertices, sorted by z-coordinate, that form the upper and lower sets.
These vertices correspond to lines in the primal that potentially contribute to the
k-th depth contour. Observe that the points of the k-th upper set are the vertices of
the k-level of the arrangement of dual lines, whereas the points of the k-th lower set

are the vertices of the (n — k + 1)-level of the arrangement.

Figure 7: Intersection point ¢; has 4 lines above and 0 line below; hence it belongs to the
lower set of the first contour. Intersection point 75 has 1 line above and 3 lines below; hence
it belongs to the upper set of the second contour.

The lower envelope of the lines that bound the lower special k-halfplanes in the primal
corresponds exactly to the lower hull of the k-th upper set in the dual. Similarly, the
upper envelope of the lines that bound the upper special k-halfplanes in the primal
corresponds exactly to the upper hull of the k-th lower set in the dual. In particular, an
edge of the k-th lower (or upper) hull that is not included in a line of the arrangement
provides a vertex of the k-th depth contour that is not a point from Z. Once the
k-th upper and lower hulls are computed in the dual, the k-th depth contour is found
by intersecting the corresponding set of upper and lower special k-halfplanes in the

primal. If the intersection is empty, the depth contour does not exist.

Our implementation uses the above approach of computing the upper and lower hulls
in the dual, followed by halfspace intersection in the primal. However, it is also
possible to determine the k-th depth contour entirely in the dual, as follows: The
convex hull of a set of points in the primal corresponds to the upper envelope and
the lower envelope of the dual arrangement. Note that the leftmost edge of the upper

envelope and the rightmost edge of the lower envelope are colinear. Similarly, the

10



rightmost edge of the upper envelope and the leftmost edge of the lower envelope are
colinear. Consider the inner common tangents of the two envelopes. These consist
of two finite segments of those same two common lines. Therefore we can think of
the convex hull of a set of points in the primal as corresponding to the finite edges
of the upper envelope, the finite edges of the lower envelope, and the finite inner
common tangents that join them. Consider now the lower hull of the k-th upper set
and the upper hull of the k-th lower set. We need to calculate the inner common
tangents between these two convex chains. Then the finite portions of these tangents
and portions of the convex chains that join the endpoints correspond to the boundary
of the depth contour in the primal. If these inner common tangents do not exist, then
the lower hull of the upper set and the upper hull of the lower set intersect, and no
depth contour at this level exists. These inner common tangents correspond to the
points of intersection between the chains in the primal that bound the intersections
of the lower special k-halfplanes and the upper special k-halfplanes respectively. If
these intersections do not exist, the boundary of intersection of the lower halfplanes
is below the boundary of intersection of the upper halfplanes and thus there is no

intersection region.

The main motivation for solving the depth contours problem in the dual is that the
technique known as topological sweep, described in the next step, allows us to effi-
ciently find all arrangement vertices and their levels. While topological sweep may be

simulated in the primal, it is more easily described and implemented in the dual.

Topological Sweep. The typical line sweep method is to use a vertical sweepline to sweep
through the arrangement vertices in increasing order of their first coordinate. This is
done by maintaining a priority queue (heap) of potential next points for the vertical
sweep. It can be shown that this requires only a linear amount of space, but at a cost of
O(logn) per update when a new vertex is swept, resulting in a total time complexity of
O(n?logn). In many problems, it is not necessary to obtain the arrangement vertices
in sorted order. It is enough simply to visit each of them in the following partial order:
the vertices of each level of the arrangement are visited in increasing order of their
first coordinate. Such an approach is used in topological sweep, which is a variation of
vertical line sweep that gives an improved runtime of O(n?) while retaining the O(n)
space bound. The topological sweep algorithm was introduced by Edelsbrunner and
Guibas (1989). For the sake of completeness, we provide a brief description of their

sweep technique here.
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Topological sweep sweeps a curved line, rather than a straight line, through the ar-
rangement. The curved line retains an important property of the vertical sweepline,
which is that each line of the arrangement is intersected exactly once by the sweepline.
The set of edges of the arrangement intersected by the sweepline is called a cut. The
sweep algorithm starts at the leftmost cut (which consists of all unbounded edges of
the arrangement with unbounded left vertices) and ends when it is at the rightmost
cut. A cut is maintained as an array of indices of the lines in the order they are
intersected. When a consecutive pair of edges of the cut intersect at a common vertex
before intersecting any other line, that vertex becomes a potential next candidate for
the topological sweep (note that every cut must always have such a pair of edges).
If more than one such vertex exists, any one of them may be chosen next for the
sweep step. See Figure 8(a). Observe that after the chosen vertex has been swept,
the new cut simply swaps the order of the pair of lines that gave rise to the vertex.
See Figure 8(b).

next candidates

swept vertex

(b)

Figure 8: (a) Cut edges are shown as thick lines. Potential candidate vertices for the next
sweep step are highlighted. (b) A single sweep step.

It would not be difficult to find the desired pair for each cut in O(logn) time. How-
ever, this would cause the total time complexity of the algorithm to be O(n?logn).
Instead, the algorithm in (Edelsbrunner and Guibas 1989) achieves its O(n?) runtime

by efficiently finding a consecutive pair of edges of a cut that intersect at a common
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vertex. In particular, an amortized cost of O(1) per pair is achieved by maintaining
data structures called the upper horizon tree and the lower horizon tree (efficiently
implemented using arrays). The horizon trees are used to find all consecutive pair of
edges of a cut that share a common vertex, and all such pairs are stored on a stack.
The next vertex to be swept is given by the pair at the top of the stack. A single
sweep step consists of popping the stack, updating the cut and the horizon trees, and
pushing any new consecutive cut edges with shared endpoints onto the stack. Note
that the stack size remains linear at all times since the size of the cut is linear. For
the runtime analysis, the crucial facts are that (a) the initial horizon trees can be
constructed in linear time, and (b) updating the horizon trees takes O(1) amortized
time (i.e., a single update may take more than O(1) time, but the total update time

for the entire sweep is O(n?)).

During the topological sweep, we can easily determine the level of each arrangement
vertex. When a vertex given by a pair of cut edges is swept, the level of that vertex is
simply the position of the upper cut edge in the cut array. Observe that all the vertices
at the k-level, for any k, are in fact swept in sorted order of their first coordinate.
Our implementation of this step returns, for each of & = 1...n/2, a sorted list of
arrangement vertices at level k, and at level n—k+1 (as discussed in the previous step,
these are the vertices that potentially contribute to the k-th depth contour). Thus,
the upper and lower sets for each depth contour are determined during the topological
sweep at no extra cost. If we are computing all depth contours, all ©(n?) intersection
points of the arrangement are saved in order to compute the depth contours (step 3

of our algorithm), producing quadratic space complexity.

Intersection of Halfplanes. The lower and upper hulls of a set of points can be computed
in linear time in the size of the set if the points are given in increasing order of their
first coordinate. For example, this can be done by using an incremental algorithm,
which can be found in standard textbooks in computational geometry (de Berg et al.
1997, Preparata and Shamos 1985). After the topological sweep, we have the sorted
list of arrangement vertices of the k-th upper and lower sets. Note that while the size
of the lower and upper hulls is always O(n) (Matousek 1991), the best known upper
bound on the size of k-levels of the arrangement of dual lines is O(nk'/3) (Dey 1998).

For each k we find the lower hull of the upper set and the upper hull of the lower
set in time linear in the sizes of the k-level and (n — k + 1)-level. The hulls represent

the upper envelope and lower envelope of the corresponding halfplanes in the primal.
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Figure 9: The dashed (dotted) lines are the halfplanes associated with the upper (lower)
set of intersection points in the arrangement.

See Figure 9. The halfspaces bounded by the lower and upper envelopes are then
intersected in the primal. This is done in time linear in the sum of the sizes of the two
envelopes, which is O(n), which gives us the k-th depth contour (if it exists). So, we
obtain the k-th depth contour in time linear in the sizes of the k and (n—k+1)-levels.
Therefore, the total runtime of this step is the sum of the sizes of all the levels of the

arrangement of dual lines, which is O(n?). This step is summarized below.

Algorithm FindHulls(VertexList)
{

U <— upper set of VertexList;
L <— lower set of VertexList;

UH <— lower hull of U;
LH <— upper hull of L;

// U and L represent the upper and lower
// envelopes of D(U) and D(L) respectively
U <— UH in the primal;

L <— LH in the primal;

return (U N L);

14



2.3 Location Depth of a Single Point

After Contour Calculations. After calculating all the depth contours, the depth of a

given point may be computed efficiently in two different ways.

e A simple and easily implementable algorithm yields the depth of a point in
O(log? n) time as follows. The initial contour calculations provide a set of nested
convex polygons representing each depth contour. The depth contours subdivide
the plane into depth regions; the region between contours k£ and k£ + 1 has depth
k. Therefore, the depth of the given point is simply the depth region in which it
lies. Determining if a point lies inside or outside a convex n-gon takes O(logn)
time. To determine the depth of a single point we can thus perform a binary

search on the depth contours to compute the result in O(log?n) time.

e A more efficient algorithm computes the depth of a point in O(logn) time using
any of the optimal algorithms for planar point location (e.g. Kirkpatrick 1983;
Sarnak and Tarjan 1986; and Edelsbrunner, Guibas, and Stolfi 1986). It is easy to
connect each interior nested convex polygon to the next larger polygon by adding
a line segment from its vertex with minimum z-coordinate to the comparable
vertex on the larger polygon and a second line segment connecting the vertices
of maximum z-coordinate. All bounded regions are now monotone, meaning
that the remaining preprocessing for any of the three cited algorithms can be
completed in linear-time in the size of the subdivision. The collection of depth
contours is a planar subdivision of size O(n?). Hence, after O(n?) preprocessing
time, computing the depth of a point takes O(logn) time. A version using the

Edelsbrunner et al. approach has been implemented by Mitchell (2002).

Without Contour Calculations. The depth contours need not be calculated first to find
the depth of a single point. An alternative O(nlogn) time algorithm is described in
Rousseeuw and Ruts (1996). Recently it was shown (Langerman and Steiger 2000)
that any algorithm for computing the location depth of a point needs 2(nlogn) time,
so the above algorithm has optimal time complexity. This algorithm has also been

extended to three dimensions in O(n?logn) time (Rousseeuw and Struyf 1998).

2.4 The Bag

There are three main steps in the construction of the bag. Recall that the bag contains at

most half of the original data points, and lies between the contour containing less than or

15



equal to half and the contour containing more than half of the points.

1. The first step in the construction is to identify these two contours. Let Dy and Dy
be two consecutive contours containing respectively n; and n;_; data points, such
that ny < |[n/2| < ng_1. Since the contours have already been calculated, start at
the deepest and count the number of original points lying on each contour until the
count exceeds [n/2]|. The contour at which we stop counting is D1 and the previous

one is Dy.

2. Next, we calculate the value of a parameter A, which determines the relative distance
from the bag to each of the two contours. This is given by A = (50 — J)/(L — J),
where Dy, contains J% of the original points and Dy _; contains L% of the original

points.

Figure 10: Determining the vertices of the bag.

3. Finally, the bag is constructed by interpolating between the two contours by using the
A value. For each vertex v on Dy or Dy_1 let [ be the line going through v and the
Tukey median T*. Let u be the intersection of [ with the other contour (Dy_;1 or Dy).
Each vertex w of the bag lies on [, interpolated between v and u, i.e., w = Av+(1—A)u.

The value of A weights the position of the bag towards Dy, or Dy_1. See Figure 10.

3 The Implementations

The algorithm described in the previous section has theoretical running time faster than
any existing implementation for depth contours. As our empirical results show, this is borne

out in practice as well.
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3.1 Complexity

The overall complexity of the implementation is O(n?) time and O(n?) space to compute all
the depth contours for a planar set of n points. Topological sweep in itself uses linear space.
Nonetheless, the space complexity is ©(n?) when all of the contours are found, because all
intersection points of the arrangement need to be saved. Note that the space complexity
would be linear if only the k-th depth contour is needed, because the convex hull of the k-set
can be computed incrementally and, as pointed out earlier, the size of any depth contour is
always O(n).

The complexity of each step is as follows. Specifying the arrangement takes O(n) time
and space. Topological sweep takes O(n?) time and O(n) space. Since we compute all the
contours for the testing of the code, our runs use O(n?) space. Computing the upper and
lower hull of the intersection points in the arrangement for all contours requires O(n?) time

and space.

3.2 The code

The main focus of the implementation is the computation of all depth contours and the bag.
Our program is implemented in C++ using the LEDA libraries (Library of Efficient Data
structures and Algorithms, www.mpi-sb.mpg.de/LEDA). The bivariate data points may be
entered interactively or by reading from a file, and the contours can be output either in
graphical form or as a file containing lists of vertices for each contour. See Figures 11 and 12
for examples of the graphical output produced by our program.

Once the contours are available, computing the bag requires only linear time. Our
implementation referred to the C code for topological sweep given in (Rosenberger 1990),
but we rewrote the code in order to make it compatible with the LEDA libraries. A linear
time incremental algorithm for computing the upper and lower hulls of points given in
sorted order was implemented as well. This step also identifies the location depth of the
original data points, which is required for the bag computation. Our implementation allows
collinearities in the data set, but currently assumes that no two points have the same z-
coordinate. There is preliminary code that makes no assumptions about the input set. All

primitive geometric computations rely on LEDA and inherit their numerical stability.

3.3 Significance

The testing phase consists of runtime comparisons for computing the Tukey median. To

check the correctness of our code, we first ran it on data sets for which the Tukey median
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Figure 11: Depth contours produced by our program for a set of 20 points.

was already known. The previously best-known algorithm for computing the Tukey median
is HALFMED (Rousseeuw and Ruts 1998), which uses an O(n?logn) time algorithm to
compute a single contour. It then uses binary search to repeatedly apply this algorithm
until the deepest contour is found, giving an O(n? log? n) algorithm for computing the Tukey
median (the center of gravity of the deepest contour). Our algorithm finds the Tukey median
by computing all the contours, as described in Section 2, in O(n?) time.

Our program was tested on a Sun Ultrasparc 167 MHz workstation, running SunOS,
and was compiled using the GNU C++ compiler. HALFMED is written in Fortran, and was
compiled using the GNU Fortran compiler. The testing was done on randomly generated
point sets of various sizes. Ten data sets of each size were generated, and the total run-
time for each size was recorded using perl benchmark scripts. The average runtimes for
HALFMED and our code are shown in Table 1.

As Table 1 shows, our algorithm provides a dramatic speed-up over HALFMED for
data sets of size greater than 40. For smaller data sets, the overhead of computing the
arrangement and using more sophisticated data structures makes the algorithm slower than

HALFMED. However, the improvement in runtime for larger data sets is notable.
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Figure 12: Depth contours produced by our program for a set of 79 points.

4 Concluding Remarks

We have constructed fast algorithms for computing all depth contours, the Tukey median
and the bag and for performing subsequent depth queries. Our results provide a significant
speed-up over existing algorithms. The code, which requires LEDA 3.8 or higher, is available

at
http://www.eecs.tufts.edu/r/geometry/locdepth.

Our implementation currently performs depth queries in O(log?n) time and assumes that
no two points in the input set have the same z-coordinate. This assumption can easily be
satisified, for example by an appropriate linear transformation of the data set. Recently
Rafalin, Souvaine and Streinu (2002) developed a method for removing this non-degeneracy
assumption and preliminary code for computing the depth contours of an arbitrary point

set is available at

http://www.eecs.tufts.edu/r/geometry/half _space.
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| n | Average CPU time over 10 runs (seconds) |

\ \ HALFMED \ Our algorithm |
10 .03 2.1
20 .09 2.1
40 .61 2.1
80 5.6 2.2
100 11.8 2.3
160 37.2 2.8
200 84.4 3.1
320 490 4.5
500 760 6.0
640 1143 8.3
750 4954 14.2

1000 9002 22.1

Table 1: Average runtimes.

Mitchell (2002) has also implemented an algorithm for O(logn) depth query.

A natural open question concerns faster algorithms for computing only the Tukey me-
dian. Theoretically, faster algorithms exist (Matousek 1991). However, a more imple-
mentable algorithm is required in practice. The problem of an efficient implementation for
computing the Tukey median in o(n?) time is the outstanding open problem in two dimen-
sions from a practical point of view. Analysis and implementation of a randomized version
of Matousek’s algorithm is underway (Lal and Souvaine 2002).

The next goal is to compute all depth contours, the Tukey median, and the bag in
three dimensions. Anagnostou, Guibas, and Polimenis (1990) presented an algorithm for
topological sweep in three dimensions from a theoretical perspective that assumes general
position. Building off of this algorithm but creating and incorporating a generalized version
of the Rafalin, Souvaine, and Streinu (2002) strategy for handling degeneracy and incorpo-
rating our strategies for building two dimensional contours should lead to the desired three

dimensional code. Work is underway.
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