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Abstract. Given a straight-line triangulation T , an edge e in T is flip-
pable if e is adjacent to two triangles that form a convex quadrilateral. A
set of edges E in T is simultaneously flippable if each edge is flippable and
no two edges are adjacent to a common triangle. Intuitively, an edge is
flippable if it may be replaced with the other diagonal of its quadrilateral
without creating edge-edge intersections, and a set of edges is simulta-
neously flippable if they may be all be flipped without interferring with
each other. We show that every straight-line triangulation on n vertices
contains at least (n− 4)/5 simultaneously flippable edges. This bound is
the best possible, and resolves an open problem by Galtier et al. .
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1 Introduction

A (geometric) triangulation of a point set P is a planar straight line graph with
vertex set P such that every bounded face is a triangle, and the outer face is
the exterior of the convex hull of P . An edge e of a triangulation is flippable if
it is adjacent to two triangles whose union is a convex quadrilateral Q(e) (see
Figure 1). An edge flip is performed by exchanging a flippable edge with the
other diagonal of the convex quadrilateral it lies in. Hurtado et al. [5] proved
that every triangulation on n vertices has at least (n− 4)/2 flippable edges, and
this bound cannot be improved in general.

A set E of edges in a triangulation are simultaneously flippable if each edge in
E is flippable, and the quadrilaterals Q(e), e ∈ E, are pairwise interior disjoint.
Note that this definition does indeed imply that simultaneously flippable edges
can be flipped at the same time without inteferring with each other. For a trian-
gulation TP of a point set P , let fsim(TP ) denote the the maximum number of
simultaneously flippable edges in TP , and let fsim(n) = minTP :|P |=n fsim(TP ) be
the minimum of fsim(TP ) over all n-element point sets P in general position in
the plane. The value of fsim(n) played a key role in recent results on the number
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Fig. 1. Examples of an edge flip (left) and a simultaneous edge flip (right). In the
simultaneous edge flip, The convex quadrilaterals containing each flippable edge (gray)
are interior-disjoint.

of various classes of planar straight line graph embedded on given point sets [2,
4].

Galtier et al. [3] proved that fsim(n) ≥ (n − 4)/6 and that for arbitrarily
large n there are triangulations TP with |P | = n such that fsim(TP ) ≤ (n−4)/5.
In this note we improve the lower bound to fsim(n) ≥ (n − 4)/5, resolving an
open problem posed in [3] and restated in [1]. We also describe a family of
triangulations TP , where |P | = n, for which fsim(TP ) = (n − 4)/5, and which
contains the set given by Galter et al. as a special case.

2 Lower bound

We obtain a lower bound of fsim(n) ≥ (n − 4)/5 using a three-part argument.
First, we assign each non-flippable edge to an incident vertex and partition the
vertices by degree and number of assigned non-flippable edges. Second, we use
a coloring result by Galtier et al. [3] to reduce the problem to the case in which
the number of flippable edges is relatively small. Third, we create a 2-colored
augmented triangulation to develop an upper bound on the number of flippable
edges that share faces with other flippable edges. Applying this upper bound
to the situation where the number of flippable edges is small yields the desired
lower bound of fsim(n) ≥ (n− 4)/5.

2.1 Separable edges

The bound fsim(n) ≥ (n − 4)/5 trivially holds for n ≤ 4, so we assume n > 4
for the remainder of the proof. Following the terminology in [4], we say that
an edge e = uv of the triangulation is separable at vertex u iff there is a line
ℓu through u such that uv is the only edge incident to u on one side of ℓu.
Examples of separable and non-separable edges are shown in Figure 2. Note
that an edge uv of T is flippable iff it is separable at neither endpoint, and that
no edge is separable at both endpoints. Vertices on the convex hull are referred
to as hull vertices and all other vertices as interior vertices. We use the following
observations from [5]:

– If u is a hull vertex, then only the two indicent hull edges are separable at u.



– If u is an interior vertex with degree 3, then all three incident edges are
separable at u.

– If u is an interior vertex with degree 4 or higher, then at most two edges are
separable at u and these edges are consecutive in the rotation of u.

Since no edge is separable at both endpoints, then no pair of interior degree 3
vertices is adjacent.
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Fig. 2. Examples of edges separable and unseparable at a vertex u. The gray dashed
lines denote separating lines. (a) An edge separable at a vertex (b) An edge not sepa-
rable at a vertex (c) All three incident edges separable at an interior vertex (d) Two
consecutive edges separable at an interior vertex.

Similarly to [5], we assign every non-flippable edge e to an incident vertex
at which it is separable. If e lies on the boundary of the convex hull, assign e
to its counterclockwise first hull vertex. If e is incident to an interior vertex of
degree 3, then assign e to this vertex. Otherwise assign e to one of its endpoints
at which it is separable, breaking ties arbitrarily. Recall that since no pair of
interior degree 3 vertices is adjacent, each such vertex has all three incident
edges assigned to it. See the left portion of Figure 4 for an example assignment.

Based on the above observations, we can now distinguish five types of vertices.
Let h be the number of hull vertices (with h ≥ 3) and let n3 be the number
of interior vertices of degree 3. Denote by n4,0, n4,1, and n4,2 the number of
interior vertices of degree 4 or higher, to which 0, 1, and 2 non-flippable edges,
respectively are assigned. We have

n = h+ n4,2 + n4,1 + n4,0 + n3. (1)

Using this notation, the number of non-flippable edges is exactly h+3n3+2n4,2+
n4,1. By Euler’s formula, T has a total of 3n − h − 3 edges. We use these facts
to get that the total number of flippable edges in T is

f = (3n− h− 3)− (h+ 3n3 + 2n4,2 + n4,1)

= (2h+ 3n3 + 3n4,2 + 3n4,1 + 3n4,0 − 3)− (h+ 3n3 + 2n4,2 + n4,1)

= h+ n4,2 + 2n4,1 + 3n4,0 − 3. (2)



2.2 Coloring argument

Galtier et al. [3] note that the edges of a geometric triangulation can be 3-colored
such that the edges of each triangle have distinct colors. Any two flippable edges
of the same color can be flipped simultaneously. Recall that there are at least
(n − 4)/2 flippable edges by the result of Hurtado et al. [5], and so the most
popular color class contains at least (n− 4)/6 simultaneously flippable edges.

If f ≥ 3⌈(n − 4)/5⌉ − 2, then the above 3-coloring argument already im-
plies that the largest color class of flippable edges contains at least ⌈(n− 4)/5⌉
simultaneously flippable edges, yielding the desired lower bound. Thus, in the
remainder of the proof we assume that

f ≤ 3

⌈
n− 4

5

⌉
− 3 ≤ 3n

5
− 3. (3)

In this case we will show a slightly stronger bound, namely that fsim > n/5 ≥
⌈(n− 4)/5⌉. Since f ≥ (n− 4)/2, the number of flippable edges must be in the
range 0.5n− 2 ≤ f < 0.6n− 3. Combining (2) and (3), we have

3

5
n ≥ h+ n4,2 + 2n4,1 + 3n4,0. (4)

We apply the 3-coloring result by Galtier et al. only for a subset of the flip-
pable edges. We call a flippable edge e isolated if the convex quadrilateral Q(e)
is bounded by 4 non-flippable edges (see Figure 3).

Fig. 3. The isolated edges of a triangulation. Each convex quadrilateral (gray) contains
an isolated flippable edge (red), and none of its four boundary edges are flippable.

It is clear that an isolated flippable edge is simultaneously flippable with
any other flippable edge. Let f0 and f1 denote the number of isolated and non-
isolated flippable edges, respectively, with f = f0 + f1. Applying the 3-coloring
argument to the non-isolated flippable edges only, the number of simultaneously
flippable edges is bounded by

fsim ≥ f0 +
f1
3

= (f − f1) +
f1
3

= f − 2

3
f1. (5)



2.3 An auxiliary triangulation

Similarly to Hurtado et al. [5] and Hoffmann et al. [4], we use an auxiliary

triangulation T̂ . We construct T̂ from T as follows:

1. Add an auxiliary vertex w in the exterior of the convex hull, and connect it
to all hull vertices.

2. Remove all interior vertices of degree 3 (and all incident edges).

An example T̂ is seen in the center portion of Figure 4. Notice that only non-
flippable edges have been deleted from T . In the triangulation T̂ , the number of
vertices is n − n3 + 1 = h + n4,0 + n4,1 + n4,2 + 1 and all faces (including the

unbounded face) are triangles. By Euler’s formula, the number of faces in T̂ is:

m = 2(n− n3 + 1)− 4 = 2h+ 2n4,2 + 2n4,1 + 2n4,0 − 2. (6)

We 2-color the faces of T̂ as follows: let all triangles incident to vertex w be
white; let all triangles obtained by deleting a vertex of degree 3 be white; for
each of the n4,2 vertices (which have degree 4 or higher in T and two assigned
consecutive separable edges), let the triangle adjacent to both nonflippable edges

be white; finally, color all remaining triangles of T̂ gray. See the right portion of
Figure 4 for an example coloring.
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Fig. 4. Producing a 2-colored auxiliary triangulation T̂ of a triangulation T . The orig-
inal triangulation T (left) orients each separable edge towards a vertex at which it is

separable. An auxiliary triangulation T̂ (center) is produced from T by adding a ver-

tex w and removing all interior vertices of degree 3. The faces of T̂ are then 2-colored
(right).

Under this coloring, the number of white faces is mwhite = h + n4,2 + n3.
Using (6), the number of gray faces is

mgray = m−mwhite

= (2h+ 2n4,2 + 2n4,1 + 2n4,0 − 2)− (h+ n4,2 + n3)

= h+ n4,2 + 2n4,1 + 2n4,0 − n3 − 2. (7)



2.4 Putting it all together

Observe that if a flippable edge e of T lies on the common boundary of two white
triangles in the auxiliary graph T̂ , then e is isolated. That is, if e is a non-isolated
flippable edge in T , then it is on the boundary of a gray triangle in T̂ . Since
every gray triangle has three edges, the number of non-isolated flippable edges
in T is at most 3mgray. Substituting this into our bound (5) on the number of
simultaneously flippable edges, we have

fsim ≥ f − 2

3
f1

≥ f − 2mgray

= (h+ n4,2 + 2n4,1 + 3n4,0 − 3)− 2(h+ n4,2 + 2n4,1 + 2n4,0 − 2− n3)

= 2n3 − h− n4,2 − 2n4,1 − n4,0 + 1. (8)

Finally, combining twice (1) minus three times (4), we obtain

2n− 3 · 3n
5

≤ 2(h+ n4,2 + n4,1 + n4,0 + n3)− 3(h+ n4,2 + 2n4,1 + 3n4,0)

n

5
≤ 2n3 − h− n4,2 − 4n4,1 − 7n4,0

< 2n3 − h− n4,2 − 2n4,1 − n4,0 + 1

≤ fsim. (9)

This gives a lower bound of fsim > n/5 ≥ (n−4)/5 under the condition in (3).
Recall that if the condition does not hold, then a lower bound of fsim ≥ (n−4)/5
is achieved by applying the 3-coloring argument by Galtier et al. to all flippable
edges.

3 Upper bound constructions

In this section we construct an infinite family of geometric triangulations with at
most (n−4)/5 simultaneously flippable edges. This family includes all triangula-
tions constructed by Galtier et al. [3]. First observe that a straight line drawing
of K4 has no flippable edge. We introduce two operations that each increase the
number of vertices by 5, and the maximum number of simultaneously flippable
edges by one.

One operation replaces an interior vertex of degree 3 by a configuration of
6 vertices as shown at left in Fig. 5. The other operation adds 5 vertices in a
close neighborhood of a hull edge as shown at right in Fig. 5. Note that both
operations maintain the property of K4 that the triangles adjacent to the convex
hull have no flippable edges. Each operation creates three new convex quadri-
laterals formed by adjacent triangles. Because any pair of these quadrilaterals
share a common triangle and none of the triangles were simultaneously flippable,
the size of the largest disjoint subset of these quadrilaterals (and the number
of newly-created simultaneously flippable edges) is 1. Each operation increases
h+ n4,2 by 3 and n3 by 2, as expected based on the previous section.
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Fig. 5. Applying two successive operations to K4 to yield a triangulation with (n−4)/5
simutaneously flippable edges.

Let Fsim denote the family of all geometric triangulations obtained from K4

via applying an arbitrary sequence of the two operations. Then every triangu-
lation T ∈ Fsim on n vertices has at most (n − 4)/5 simultaneously flippable
edges, attaining our lower bound for fsim(n). We note that all upper bound con-
structions by Galtier et al. [3] can be obtained by applying our 2nd operation
successively to all sides, starting from K4.

4 Algorithmic aspects

Finally, we consider computing a solution to the following problem: given a set
of n points in the plane, and a triangulation T on these points, find a maximum
set of simultaneously flippable edges of T . To solve this problem, we use the
flippable dual graph of T : a subgraph of the dual graph of T containing exactly
the edges whose duals are flippable in T . The following fact leads to a simple
algorithm: a set of flippable edges E in T is simultaneously flippable if and only
if the edges in E correspond to a matching in the flippable dual graph of T . This
is true because a matching assigns at most one edge to each triangle, ensuring
that no two edges are adjacent to a common triangle.

Using this fact, a maximum set of simultaneously flippable edges can be
computed by a maximum matching algorithm. Consider the subgraph of the
triangulation consisting of flippable edges (both isolated and non-isolated) and
find a maximum matching on this graph. A maximum matching can be computed
in O(n1.5) deterministic time [7] or in O(nω/2) = o(n1.19) expected time [6],
where ω is the time required to multiply two n×n matrices. Since flippable edges
can be identified in O(n) time, the algorithm runs in O(n1.5) deterministic time,
or o(n1.19) expected time, depending upon which maximum matching algorithm
is used.
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Fig. 6. Given the flippable dual graph (shown in gray at left) of a triangulation, a
maximum matching on it corresponds to a maximum set of simultaneously flippable
edges of the triangulation (shown in dashed lines at right).
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